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ABSTRACT

Interference effects between a highly underexpanded, sonic or supersonic
jet in a subsonic or supersonic crossflow, and the surface from which
the jet exhausts are examined. For subsonic freestream Mach numbers,
existing data is examined and correlated. Various semi-empirical
models to represent the interference pressure distribution on flat
plates are then developed. For supersonic freestream Mach numbers,
a computer program for calculating jet interference effects on axisym-
metric bodies at angle of attack is de'scribed. Interference effects
between the jet plume and control fins on a cruciform missile are
analyzed. A semi-empirical model of the jet in a crossflow, valid at
large distances from the nozzle is developed. The results of this
model are then used to compute interference forces and moments on
fins located aft of the nozzle, both for subsonic and for supersonic
freestream Mach numbers.
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FOREWORD

This report describes results of an analysis conducted by the
McDonnell Douglas Astronautics Company- -Western Division
(MDAC-WD), under United States Army Contract DAAH01-68-C-1919.
The contract was initiated under DA Project No. 1M2623XXA206 and
AMC Management Structure Code No. 522C. 11. 148.- The technical
effort was conducted between 1 June 1968 and 31 August 1969. The
project was administered under the direction of the Aerodynamics
Branch, Advanced Systems Laboratory, U. S. Army Missile Com-
mand, Redstone Arsenal, Alabama. The Army technical monitors
for the stud), were Mr. D. J. Spring and Mr. T. A. Street.

In addition to the authors, Mr. 5. G. Davis and Dr. R. Rosen of
MDAC-WD made significant contributions to the boundary layer sepa-
ration analysis and subsonic flow modeling, respectively.
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Section 1

INTRODUCTION

The problem of analyzing the effectiveness of reaction jet controL
systems on flight vehicles operating in the atmosphere has received
considerable interest in the past several years (e. g., References 1
to 11). It is well known that the interaction between a reaction con-
trol jet and flow around the jet on a ve.hicle surface generates a
force on the vehicle which is often larger than the jet thrust. Con-
sequently the problem of analyzing reaction jet control effectiveness
usually reduces to one of determining the magnitude and behavior of
the force due to this interaction. The presence, and frequent domi-
nance, of the force due to interaction leads to the term "jet inter-
action" (JI) control which is usually applied to endoatmospheric
reaction control systems.

Reports of both experimental and analytical studies of JI are common
in the literature. These studies are generally classified according to
mainstream flow conditions and the jet configuration. The case of
widest interest (e. g., References 5, 12, 13, 14, 15) has been that of
two-dimensional interaction between the jet from an infinite sonic
slot and a uniform supersonic stream over a flat plate. The inter-
action is considered to be three-dimensional whenever a velocity
component exists normal to the plane of intersection of the mainstream
velocity and the jet centerline in the interaction flow region. The
three-dimensional interaction between a jet from an orifice or nozzle
in a flat plate and a uniform supersonic stream has received attention
from various investigators (e. g., References Z, 16, 17, 18). More
complex JI problems involving variously configured sonic and super-
sonic jets exhausting transverse to axisymmetric or three-dimensional
supersonic flows are more infrequently discussed in the unclassified
literature (e. g., References 1, 2, 3, 6, 8). Finally, studies of
underexpanded sonic or supersonic jets interacting with subsonic
mainstreams are comparatively rare for any flow geometry (e. g.,
References 8, 9, 10, 19).

Some success in scaling experimental data for JI control forces has
been demonstrated in the literature, notably for two-dimensional
flows. However, JI control force prediction techniques for complex
flow geometries typical of those encountered in application are rare
and generally very limited in range of applicability. The blast wave
analogy methods proposed by various investigators, as discussed in
Reference 19, have been most commonly applied.

Preceding Page Blank
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The objective of the study reported here has been to develop
approximate JI control force predcction techniques applicable to 4I in
three-dimensional subsonic and supersonic flows. In the initial phase
of the study (Reference 19), emphasis was placed on devising a
technique applicable to 3I controls on axisymmetric missiles in
supersonic flight, and a lesser effort was devoted to the subsonic
flight problem. In the second phase of the study, emphasis has
been placed on the development of a technique for analyzing the 3I
problerm when the mainstream is subsonic. A secondary effort in the
second phase has been devoted to expanding the range of applicability
of the supersonic mainstream analysis technique developed in the
initial phas e.

The general complexity of three-dimensional JI flows is well known,
particularly with regard to their boundary layer separaticn and jet
plume aspects. Consequently, approaches to interaction force
prediction methods are usually through analogies to the interaction
flow field rather than descriptions of it. This has been the case in
the present study. Based on experimental data available in the
literature, or provided by the U. S. Army Missile Command
(AMICOM) from recent experiments, the signiricant governing aspects
of the flow field have been identified. Then inviscid flow analogies
have been developed to represent the various aspects if the flow field.
This approach has been taken with both supersonic and subsonic
mainstream 3I with various degrees of success as discussed in
Reference 19 and this report.

Since the second phase of the study has been strongly oriented toward
JI in a subsonic mainstream, the bulk of this report is devoted to
this subject. The general nature of the JI flow field in a subsonic
mainstream is discussed along with empirical models of its behavior
in Section 2. Various incompressible, potential flow models of the
subsonic mainstream- JI flow are discussed in Sectionr 3. The expanded
equivalent body analogy JI effectiveness prediction program for three-
dimensional jets on axisymcnetric missiles in supersonic flight is'
described in Section 4. Methods of calculating the effects of jet-to-fin
interference when fins are located aft of JI controls in subsonic or
supersonic flight are discussed in Section 5.
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Section 2

SUBSONIC MAINSTREAM JET INTERACTION
DESCRIPTION AND SCALING

The development of mathematical models of JI in a subsonic mainstream
requires a basic understanding of the fluid mechanics involved which
can only be derived from detailed experiments. In this section the
physical aspects of the interaction flow will be described, based on
available experimental data.. Empirical scaling of interference pres-
sures inthe interaction region will also be described.

Reaction control jet systems typically employ very high chamber
pressures, so that downstream of the nozzle, tthe jet exhibits the inter-
nal shock system characteristic of highly underexpanded plumes (see
Figure I). It will be shown later that a characteristic dimension
of this shock system is an important scaling length for the interfer-
ence pressure distribution.

No experiments were conducted by MDAC-WD during the study. However,
previously unpublished experimnental data taken by AMICOM was made
available for use in the study. To the knowledge of the authors, -the
experimental data concerning an underexpanded jet in a subsonic main-
stream which is being provided by AMICOM is the only reasonably
detailed data in existence (References 10 and Z0 contain limited data).
The more detailed experiments by AMICOIMA are not yet ý.omplete;
consequently, experimental data regarding a subsonic jet in a crosswind
have been relied on heavily during the present sltudy. Existing data
may be classified into two categories: (1) Flow field surveys in the
vicinity of the jet plume, along the jet trajectory and (2) pressure dis-
tribution on the surface from which the jet exhausts or forces and
moments on the body from which the jet exhausts.

2. I DESCRIPTION OF THE JET

The flow field of interest is illustrated in the schlieren photograph in
Figure 1. Reaction control jets are typically highly underexpanded,
causing a shock engulfed plume at the jet exit similar to that evident
in the figure. The existence of this plume differentiates the subsonic
mainstream JI flow field from that often studied in reference to the
vertical take-off and landing (VTOL) aircraft transitional flight prob-
tem. VTOL related studies typically deal with low subsonic jet
velocities.

To the authors' knowledge, no surveys of the flow in a highly under-
expanded rocket plume exhausting normal to a subsonic free stream
have been conducted. Examination of flow visualization photographs

3
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such as Figure 1 indicates thAt the plume shape is not influenced too
strongly by the crossflow. "Lndeed, since the flow within the barrel
shock system is highly supersor,.c, most of the flow field in this
portion of the jet coile would be unaffected by any changes in the

plume boundary. Near the nozzle exit, a highly underexpanded
plume in a ,;ubsonic crossflow might therefore be expected to
behave approximately as a jet plume exhausting into still air.

The jet plume, however, has a blockage and entrainmnent effect on
the mainstream, in the neighborhood of the nozzle exit. Some
aspects of this behavior can be surmised. A shear layer forms
around the jet plume and mixing between the jet and the mainstream
begins in this region where the jet axial velocity is relatively low.
The mainstream flow past the plumeand shear layer is believed to
behave in a manner similar to flow over a cylinder at low Reynolds
number with separation and the formation of vortices on the leeward
side. The behavior of the mixing region is more evident in Figure 2
where the underexpanded jet is supersonic at the exit and the plume
exhibits the familiar diamond shock pattern. Since the supersonic
jet shown has an expansion ratio of 4. 0, it is less underexpanded
than the sonic jet in Figure 1, and the shock bounding the plume is
not as strong.

At some distance from the nozzle exit, the jet eventually becomes
subsonic, probably before significant bending occurs. From this
point, more definitive descripti.ons of the jet are possible based on
the more detailed experimental data for a subsonic jet in a crosswind.

Several excellent observations of the qualitative behavior of subsonic
jets in a subsonic crossflow exist in the literature, such as those in
References 2! and 22. The remarks in this paragraph are based
mainly on these references. Beginning at the nozzle and progressing
along the jet axis, the fir3t region encountered consists of a potential
core surrounded by a turbulent mixing layer., The low fnomentum
flow in the mixing layer is'deflected downstream by the crossflow,
causing a deformation of the jet cross-section into a kidney shape.
The flow separates near the edges cf the jet arid two counter-
rotating vortices are formed on the leeward side, as in low Reynolds
number flow about a circular cylinder. The potential core' is con-
sumed in a shorter distance than if the jet were exhausting into still
air, but its centerline remains undeflected. except in the case of
relatively low jet velocities compared to free stream velocities.
After the jet has become fully turbulent, vigorous mixing with the
free stream occurs. The vortices on the leeward side apparently
enhance the entrainment of external air. This mixing causes the
jet axial velocity to decay much more rapidly than for a jet in still
air., as illustrated by Figure 11 of Reference 23. The entrainment
of free stream momentum causes the jet to bend quickly to a direc-
tion which is almost aligned with the free stream. It is evidI.ot
from experimeital data such as that in Reference 23 that mixing or
momentum entrainment and not a 'cross-flow pressure drag" causes
most of tne et bending, Some analogies between the cross flow pres-
sure drag on a solid obstacle and the jet bending have been drawn,
but experiments seeC- to indicate that the pressure in the jet soon
i-,.justs 1o th,. free .Lrearn value and any pressure drag influeý,ce is

5
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LU ihe immediate neighborhood of the orifice. For example,

II
Jo rdison states in Reference 21 that surveys show that the pressure

in the jet in everywvhere equala to thc free strarr, pressure a fewJ diameters froia the orifice. Some more e.,idence of the rapid decay
to free streamn pressure is shown in Reference 24., In the zone of

I . maximum bending, the leeward vortices have been absorbed into the
jet and continue to grow in strength. The final state in the jet appears
i-o be a long region where the jet direction differs little from the free
stream, and where the axial jet velocity is practically the same as the

|f free stream velocity. This last region is called the "vortex zone" in
Referenc 2Z because the coanter-rotating vortices still persist,
ait!,ough with diminishing strength.

2.2 UNDEREXPANDED JET INTERACTION PRESSURE

DISTRIBUTIONS

* Several experiffient"' have been conducted,;: by the Advanced Systems
Laboeatory, .,Aetearich and Engineering_ Directorate, AMICOM,

' whdre pressure distributbons due to interaction between an under-
4 * eX'andejet and a subsonic stream were measured. Except for the

S. data presenited by. Spring and S.tr.eet in Reference 8, results of these
data from Wind tunnel tests 'conducted by AMICOM at Cornell

Aeronautical .Laboraitory (CAL) and Arnold Engineering Development
Center (AEDC) were made available to the authors by Spring and

,' . Street. these'dati, some of which will be presented in this section,
are contained in References 25 to 28, which are not generally avail-
able except thro0ugh AMICOM. Schematic drawings of the test models
are shown,in Figureg 3 an~1 4.'

References 25 and 26.have. limiLed'preossure data for a highly under-
expanded jet. exhausting from a flat plate. The tests of Reference 25
were conducted with 'several different nozzle configurations of slightly

* differert exit Mach numbers.. Differ.n.t jet gases were also used in
order to investigate the effect of changing the jet specific heat ratio,
Y-. The free streamrMfch number was varied from 0. 6 to 1. 2, and

jet charnberi-to-iree-stream pressure W.,LS varied. The experi-
ment repozfted in Reference 26 was conducted with essentially the
same model, but included tests of hot gas e:fects.

References 27 and 28 contain extensive interference pressure data
for an underexpanded jet exhausti'ng just forward of the tiose juncture
from an ogive-cylinder missile configuration. The ogive-cyli.nIdnr
model of Reference 27 had interchangeable circular and slot nozzles.
The two circular nozzles had different exit diameters but the same
exit Mach number. The model of Reference 28 was tested with one
circular nozzle and one slot nozzle, both of which were sonic.
During these tests, the free stream Mach number varied from 0. 20
to 1. 25 and the jet chamber-to-free-stream pressure ratio ranged
from 0 to 120. The pressure distribution in the neighborhood of
the nozzle was measured with a large number of taps distributed on
the surfa,-e. Total forces and moments on the model were also

7 - 1
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Figure 3. Flat Plate Model Dimension and Orifice Locations
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measured through a sting balance system. During some of the
experiments rectangular, cruciform stabilizing fins were placed
on the model. Two of the fins were instrumented with pressure taps,
and the other two had their own internal balances to measure forces
and moments.

Generally, the pressure distributions measured in References 25 to
Z8 exhibit the same behavior as those observed for,a supersonic main-
stream. There is a limited region of positive pressure coefficient on
the windward side of the jet and a larger negative Cp region on the
leeward side. It has been found that it is possible to correlate some
of the experim'-ital results by properly choosing the scaling length.
The ogive-cyliuder data of References 27 and 28 will be discussed first,
since the pressure distributions were measured in greater detail.

Using the coordinate system zhown in Figure 5, pressure coefficients
along the plane of symmetry S = 0 are plotted in Figure 6 for one value
of the free stream Mach number arid various pressure ratios. The
pressure coefficient has been defined in the conventional manner:

P - P-P0
C =

Figure 5. Reference Coordinate System for Interference Premure on an Ogive-Cylinder
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Although the nozzle was not quite located on the cylindrical portion

of the model, the effects of curvature have been neglected and x has

been assumed to be equal to the distance along the model axis in

inches. Also, the jet-off pressure distribution has not been sub-

tracted out, so that the Cp shown in Figure 6 is not strictly an

interference pressure coefficient. The data shows, however, that

the jet-off Cp is very small and has a negligible effect on the curves
of Figure 6. These curves exhibit the characteristic positive
pressure coefficients on the windward (x<O) side, with large negative
pressure coefficients on the leeward (x>O) side.

The jets used in References 27 and 28 are highly underexpanded and
possess the internal shock structure characteristics shown in Fig-
ure 2. It has been found that a significant dimension of this shock
structure provides a reasonably valid scaling length for pressure
distributions in the neighborhood of the jet exit. Based on flow
visualization data such as shown in Figures 1 and 2 it canbe assumed
that, insofar as internal shocks are concerned, jets penetrating a
subsonic cross flow behave as if they were exhausting into still air.
Let h denote the distance from the nozzle exit to the Mach disk or
to the first intersection of the "diamond" shock pattern when this
configuration exists. The data of Love el al in Reference 29 indi-
cate that, for both shock configurations, the ratio of h to th- jet exit
diameter can be correlated as a function of the jet exit to free stream
pressure ratio at a fixed value of the jet exit Mach number. Fo.f
sonic nozzles, Crist, Sherman, afid Glass have correlated experimental
values of h for a wide range of conditions by plotting (h/dJ) vs the jet
stagnation to ambient static pressure ratio P, as shown in Refer-
ence 30. Based on experimental data, they obtain the empirical
equation:

h()
d. = (0. 645) •'- (I)

Although this equation does not strictly apply to a diamohd shock
pattern and a supersonic nozzle, it will be used to calculate h for
scaling purposes with the nozzle throat diameter dt substituted for
dj. A length, h, -thus calculated, permits correlation of interference
pressure data for different pressure ratios and nozzle diameters for
an underexpanded jet in a subsonic crossflow.

Figure 7 shows the same data as Figure 6, but with x scaled by the
shock intersection height h. Evidently, the data for all pressure
ratios fall on a single curve. Data for larger diameter nozzle
(dt = 0. 33 in. ) are also included in the figure, and the points corre-
late well with dt = 0. 22 in. data. Figure 8 shows the same data cor-
relation for cases when the free stream Mach number is 0. 20. Note
that in this case Cp is negative upstream as well as downstream of
the nozzle. The data for M., = 0. Z0 has also been correlated along
the line x = 0, as shown in Figure 9. The abscissa represents the
arc length:

S R=4i

nor malized by h.

11
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Fiur 10. Refamte Coordinate System for DNucribng Interfmrnc Prsmirv Diaributlon on e Flat Plate

When the flat plate interference pressure measurements of Refer-
ence 25 are evaluated, it is found that the scale, h, correlates this
data also. The coordinate system used is shown schematically in
Figure 10. Figure 11 is a plot of correlated data along the centerline
of the plate, and Figure 12 shows a limiited amount of data at inter-
mediate values of 0. It muot be pointed out that the results shown in
Figures 11 and 12 are not as conclusive as those on the previous
graphs because the pressure ratios are not very different. Further-
,-nore, the jet exit Mach numbers in the cases shown are not exactly
the same, and it appears that the (Jirrelation only holds for a fixed
exit Mach number, as discussed below.

In sum, it has been found that a scale which is characteristic of the
internal shock structure in a highly underexpanded jet and varies
directly as-the square root of the prcissure ratio correlates the inter-
ference pressure distribution for fixed M. and Mj. A striking feature
of the correlated data is the limited extent of the disturbance in the
flat plate as well as the ogive-cylinder cases. It appears that tht,
induced pressures reduce to zero within four to five lengths, h, from
the nozzle.

Pressure coefficients from Reference 28 for tests with a sonic nozzle
were compared to the M = 2. 94 data at equal values of M.. The
curves did not agree. &urnsideration was given to improving the cal-
culation of Mach disk height to include the dependence on nozzle Mach

16
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number, M- in order to extend the correlation to other nozzle Mach

numbers. A method for computing h in a highly underexpanded
supersonic plume exhausting into still air was developed, as discussed
in Appendix A. However, this still failed to correlate the effects of
nozzle exit Mach number.

The interaction forces and moments produced by the interference
pressures due to the unde.-expanded jet in a subsonic stream were
measured as noted above in the tests described in References 27 and
28. For the ogive-cylinder cenfiguration shown in Figure 4, the jet
thrust amplification factor, defirned

Thrust + Interaction Force
Thrust

is shown in Figure 13 as a function of the momentum ratio parameter
described in Reference 19. It is evident that the amplification factor
scales reasonably well with the momentum ratio parameter, even
when jet throat area and free stream Mach number are varied. In
fact, for these low subsonic Mach numbers the correlation is better
than the same correlation for a sirr'ilar configuration at the tran-
sonic and supersonic Mach numbers shown in Reference 31. The
effect of exit Mach number on amplification factor is not correlated
by the momentum ratio, just as its effect on pressure distribution
was not correlated by the plume dimension, as described above.

2.3 EMPIRICAL MODELING OF THE INTERFERENCE
PRESSURE DISTRIBUTION

Since the objective of the study reported here has been to expedi-
tiously develop reliable engineering analysis techniques, the first
analysis models developed were empirical. The empirical models
are not only of direct use, they are also of considerable value in the
development of more analytical analysis models, as will be described
in Section 3. In this section, experimental interference pressure
distributions on a flat plate are represented by means of a F:)urier
series in the azimuthal angle, e, defined in Figure 10.

The principal difficulty encountered in the development of empirical
models of the interference pressure distribution was the lack of
sufficiently detailed experimental data. The data in References 27
and 28 are representative of the level of detail required; however,
the three-dimensional nature of the undisturbed flow leads to a
special case in the interference pressure distribution. The data in
References 25 and 26 for the jet exhausting into a uniform stream
are ideal for differentiating the effects of interaction; however, the
pressure distributions were not measured in sufficient detail to
provide data for empirical modeling. Experiments are presently
being conducted by AMICOM to provide more detailed data for the
behavior of an underexpanded jet exhausting from a fl- plate u .
uniform subsonic crossflow. In the interim, data Lor interierence
pressures due to a subsonic jet as reported in Reference 32 by Vogler
have been used. Comparison of the limited data f-ipm Reference 25
with the data from Reference 32 indicates that the general shape and
levels of the interference pressure distribution are approximately the
same in both cases.

19
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For subsonic jets, References 32 to 34 indicate that the significant

correlating parameter is the ratio of free stream to jet velocity.

(Uoo/Uj). Geometrital similarity also exists, so that data for the

same velocity ratio, normalized by the nozzle diameter, falls

approximately on a single curve. Plots of Vogler's data at a fixed

value of r (where r has been normalized by the jet diameter)

reveal that for a fixed value of (U,,/Uj) the data varies regularly

with 0. It appears therefore that a truncated Fourier series of the

form

C r,0; uU.) nr, cos ne (2)

n=0 c

should represent the data quite well with relatively few terms. The

coordinates used in Equation (1) are depicted in Figure 10. Due to

the symmetry of the flow about the lines 8 = 0 and 8 = Tr, the series

will not contain any sine terms. The coefficients, cn, may be

evaluated at a fixed value of r by numerically integrating the data
and using the orthogonality of the cosine function. That is, the
expressions

co = -r-; fcT dO (3)
0( C;0

and

c (r; U /Uj )= 2 - Cp cos ne dG (4)
0

fcr n>0

can be used.

Some difficulty was encountered in using Vogler's data, principally
because the measured pressure coefficie,:t does not decay to zero
as it should. As mentioned in Reference 32, this fact is probably
caused by misalignment of the plate with respect to the free stream
or possibly by warping of the plate under the loads induced by the jet.
The data was therefore adjusted along each ray 8 = constant so that
the pressure coefficient would be zero at r = 10. The results of plot-
ting the data for U, /U j = 0. 3 as a function of 8 for various values
of the normalized radius r are shown in Figures 14a-14d. Using
Equations (3) and (4), the data has been integrated numerically to
obtain the coefficients cn. Two- and three-term series
representations

S=c(r) + r)cos

and

Cp = 0o(r) + cI(r)cos 0 + c 2 (r)cos 28

are also plotted in Figures 14a- i4d. Evidently, three terms in the
series are sufficient to represent the pre.ssure distribution quite
well.
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There is one other distinct advantage to this truncated Fourier
series technique. The force or moment on the plate due tL the
interaction can be calculated from the equation

foC2Tr r(n+l)
F or M = qJ C cos nOr dr dO (5)r. 0 P

where the force is obtained if n equals 0 and the moment results
if n ,quals 1. If the pressure coefficient is written in the form of
Equation (2), the integral becomes

n~r

ff cosnOrc (cosmdr

or

7r c cos nO cos m@ r(l+n) dr dO

n=0 "

Due to the orthogonality of the cosine, this now becomes

F = qfofc 0 r dr dO
and 0

M =qO0 cI cos Or2 dr dO

Thus, the total contribution to the forces comes from the first term
of the Fourier series (truncated or complete) and the total contribu-
tion to the moment comes from the second. Matching the first
couple of terms of a Fourier series takes on a new significance in
the light of this result. If analytical models could be found that
would have very close agreement in these terms for all values of r,
then the two most important quantities could be predicted quite well.

Figures 15 and 16 show the first two Fourier coefficients obtained
from all of Vogler's data as functions of r for various values of
U /UP. The ,ariation in the third coefficient, c 2 , is much more
irregular, as shown in Figure 17.

From the above results, it is evident that Fourier series techniques
will yield a simple and efficient empirical description of interference
pressure distributions on a flat plate. In addition, this means of
data analysis has been helpful in the development of semi-empirical
flowfield models, as described in the next section.
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Section 3

FLOWFIELD MODELS FOR THE INTERACTION REGION

The subsonic mainstream JI flowfield is characterized by complex
phenomena, including mixing of turbulent and laminar, compressible
and comparatively incompressible flows, as well as three-dimensional
flow-separat ion phenomena. Consequently, detailed mathematical
modeling of the flow represents a task of considerably higher magni-
tude than that intended in the study reported here. In this study, the
approach taken to mathematical modeling was indirect. Analogies to
the actual flowfield were postulated that could be expected to yield
pressure distributions in the region of the jet exit which would
behave as those derived from experiment. The model flows were
assumed to be incompressible and inviscid, and mathematical models
were developed to allow maximum use of empirical data. The
amenability of pressure distribution data to empirical description, as
described in Section 2, provides some degree of flexibility in combin-
ing analytical and empirical methods.

The models developed may be divided into two general categories:
phenomenological and pressure. The former introduce in some form
the gross physical effects that the jet may be expected to induce on the
surrounding stream, such as blockage and entrainment. The latter
postulate a flow field intended only to give the proper qualitative pres-
sure distribution. All the models contain arbitrary constants which
are adjusted by matching the resultant pressures to experimental
data, in most cases by means of the Fourier series representation
described in Section 2. Due to the lack of sufficient detailed inter-
ference pressure distributions on flat plates with highly under-
expanded jets, the data of Vogler has been used throughout. It is
expected that the techniques developed may also be used to describe
interference pressures when the jet is highly underexpanded.

3.1 MODELS PROPOSED IN THE LITERATURE

Various attempts have been made at theoretically predicting the
interference pressure distribution on a flat plate from which a
transverse jet exhausts. The main. concern has been with the VTOL
problem, so that the discussion applies to jets of relatively low
velocity whose exit pressure is roughly equal to the free stream
pressure.

Numerous investigators (References 19, 32, 33 and 35) have attempted
to represert the interference pressure on the plate by the inviscid flow

Preceding Page Blank
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about an infinite solid circular cylinder normal to the cross flow.

While for some velocity ratios the agreement is nut unreasonable on

the windward side of the jet, it is not good on the downstream portion

of the plate.

In Reference 33, Bradbury and Wood have represented the interference

effects produced by the jet by means of an entrainment and a blockage

contribution to the velocity on the plate surface. It is assumed that

the entrainment contribution is axisymmetric about the nozzle center-

line, whereas the blockage term is not. Entrainment is assumed to

vary with the ratio (U./U-) whereas the blockage term is taken to be

independent of this ratio. Bradbury and Wood show that along the

centerline of the plate, the pressure coefficient should then have the
form

1- f(r) ._ + blockage termp (UCO/ U.
T-P-J

where the blockage term is independent of (Um /Uj). Consequently, a
plot of (1 - vs (Uj/U 0,) should be a straight linie for large values
of (Uj/U1 ,). CBradbury and Wood show that this is the case. The
entrainment function f(r) is calculated by postulating a sink distribution
along the axis of the jet which will yield the same entrainment as
calculated from a turbulent mixing analysis. However, it is shown
that the contribution of this entrainment function to the overall pres-
sure coefficient is extremely small so that most of the observed
pressure coefficient would have to come from the blockage term. In
Reference 33, Bradbury and Wood indicated that they had been unable
to develop such a blockage term.

Wooler, et al, describe, in Reference 36, a very complete model which
they have formulated for predicting interference pressures on wings
with lift fans. Their method includes a scheme for predicting jet
trajectories, provided that some constants can be adjusted empirically.
These constants fix the entrainment rate and the growth of the jet in
cross-section, and they are evaluated by matching theoretical and
experimental jet trajectories. With the entrainment and blockage of
the jet thus obtained, Wooler, et al, represent the effect of the jet on
the surrounding fluid by distributing sinks and doublets along the jet
trajectory. In particular, the upwash on the plane of the wing is cal-
culated, from which the interference pressure is then found. The
authors compare their theoretical results to measured pressure
coefficients on a rectangular wing which they have tested. They show
satisfactory agreement at fairly large distances from the jet orifice,
but the agreement near the nozzle is not good. Figure 18 is a
comparison made from the results of Reference 36. The pressure
coefficient is plotted in the coordinates of Figure 10 for e = 900, by
cross-plotting the chordwise C p distribution given in Reference 36
for the midpoint on the chord.
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Another model for predicting interference pressures is proposed by
Kuiper in Reference 9. He represents the blockage produced by the
jet by the potential flow about a three-dimensional source in a uniform
stream. The source ,is located at some distance from the exit plane of
the nozzle, and this~distance is adjusted to match the data of Ref-
erence'32. In Reference 9, however, the jets are considered to be
located on the aft end of the vehicle, so that Kuiper is only concerned
with the 9 range

90 -5 0 27v°.

3. 2 PHENOMENOLOGICAL MODELS

Two models will be considered under this heading, Referring to
Figure 10, it is assumed that the flowfield is two dimensional in
planes z = constant, and that the free stream is incompressible,
inviscid, and irrotational so that flow in the (x, y) plane obeys the
two-dimensional Laplace's equation. The first model, called the
doublet model, consists of the superposition of a free stream, source
or sink, and a doublet. The doublet attempts to account for the block-
age effects of the jet, while the sink would represent the entrainment
caused by turbulent mixing. The second flow model, called the vortex
model, is the same as the first, except for the addition of two counter-
rotating vortices downstream of the origin. It is known experimentally
that these vortices exist, and that the flow bears some sinmilarity to
separated flow behind a cylinder.

It has been shown in Section 2 that a truncated Fourier series in C
succeeds in representing the data with reasonable accuracy. Con-
sequently, the following procedure has been adopted for completely
determining the models. Once the number and types of singularities
have been chosen, the complex potential for the flowfield is written in
terms of the singularity strengths. From this, an expression f3r the
pressure coefficient is obtained and put in the form of a Fourier
series in 0, as in Equation (2). By setting each coefficient at a given
value of r equal to tbe corresponding one obtained from the data,
equations are obtained which may then be solved simultaneously for
the unknown singularity strengths. This may be done for several values
of the velocity ratio, using the data of Reference 32, and the singularity
strengths obtained as functions of this velocity ratio. The benefits
of this technique are twofold. First. its use will allow the extension
of limited amounts of data to other velocity ratios. Second, by
determining which singularities are strongest, the dominant factors
in the flowfield can be inferred. This information could be extremely
important in trying to relate the results obtained from flat plate data
to an axisymmetric body. The model will yield results at one value
of r which are as close to the data as the Fourier series representa-
tion is. The accuracy of results at other values of the radius will
depend upon how closely the model depicts the actual situation and
will determine whether the model is valid. Also, as discussed in
Section 2, any model that accurately reproduces the r dependence of
the first two terms in the 7ourier series will accurately predict
integrated forces and moments.
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3. Z. 1 Doublet Model

The doublet model is a two-dimensional, potential flow model derived
from the superpohition of complex potentials for a uniform flow, a
doublet, and a source (or sink) which are described in Reference 37.

Let • denote the complex variable

=x + iy

where x and y have been normalized by the jet diameter, and let w(;)
denote the complex potential. Then the complex potential for flow
about a doublet and a source may be described by the Equation

A*
w* = A + A*log_ + (6)

where the coefficients An are purely real. If the model and actual
flows are to have the same velocity at large distances, Ao•must be
chosen equal to U•, and the pressure coefficient

p - pr
C = 0

p P 'O U CO

2

is given by:

C = I - = ( (7)

Ucv

where a bar denotes the complex conjugate, as described in Ref-
erence 37. The above choice of A*, however, creates a problem in
matching the model and the experimental pressure coefficients. It
may be shown that the Equations (6) and (7), when combined and
transformed to real variables, lead to a three-term Fourier series
for the pressure coefficient (up to and i.icluding a cos 20 term).
Equating coefficients in that series term by term to the experimentally
determined coefficients, cn (r), would lead to three ,equations for the
two unknowns A, and A•. This over specification can be avoided by
leaving A* unspecified and obtaining its value from a matching of the
coefficients for all three terms. Since the resulting value of Ao will
differ from UD, the uniform stream specified in the model will not
have the same velocity as the actual free stream flow. Since the
objective of the model is to match pressures, it is of course desirable
that the model and actual flows have the same free -stre'a-m static
pressure. Consequently, differing free stream velocities require that
their stagnation pressures be different. By allowing different
stagnation pressures in the flow and the model, the pressure at any
stagnation points which arise in the model flow may be adjiisted for
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better agreement with data. Thi- may prov, tu bue necessary, sinc(-(
the data of Vogler shows that, even on the windward side, the, neas-
ured pressures never reach the value of the free stream stagnation
pressure.

Bernoulli's equation for the model flow can be written

where

--magnitude of the dimensional velocity vector

uniform flow velocity in the model

The pressure coefficient can be written in terms of the actual free
stream velocity as

pPWCUZ U -

where it has been assumed that the model and actual flow densities are
the same. Now, in Equation (6) A ' , so that normalizing Equa-
tion (6) by U, yields "

w • Ao0 + A1 log +- (9

where

U

0 U 0

and therefore the pressure coefficient is

C -A2 - dw) TW-\(10)p 0 7 VT) I

Substituting Equation (9) into Equation (10) gives

2 2_ _
Ai A2 (~+~

Cp -- _-r D A0 A I +T)+A, A.2 +
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1 This expression for the pressure coefficient is now to be written asi

a Fourier series in the azimithal angle e. It can be dune directly in

this case by the substitution: e c

re "•=re,

or for more complex models by the integral definitions, Equa-
tions (3, 4), After performing the substitution and equating the
resulting expression term by term to the series

2
Cp (r, 0) 1 cn(r) cos nO

n=O

the following three equations result-

Co(r) [- A (11)

Ao A2
c 2 (r) 2 rZ (13)

r

These expressions for the coefficients, cn, are to be set equal to
experimentally determined values at a fixed value of r.

The value of r chosen for matching data is to some extent arbitrary.
The circle r = 1 was selected because this is the region with the
highest values of CP for which data were consistently available.
Equations (11, 12, 13) then become

A2 +A 2  c (I) (14)

ZA (Ao - - (1) (15)
1 2

2A4o A = c 2 (l) (16)

These may be solved as follows:

Adding Equations (14) and (15) yields

(A -A 2 ) 2 + ZA 1 Ao (co + c 1 ),
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and subtracting Equation (15) from Equation (14) yields II
(A1 + A 2 )2 

- 2A A - (c - c)

Now, subtracting Equation (16) from each oi" these leads to

2

(A 1 - A2 )2 + ZAo(A 1  A 2 ) + (co + Cl 9 c2 Q (17)

(AI + A12 2Ao(AI + A 2 ) + (c - cI + c 2 ) 0 (18) 4
The quadratics in Equations (17, 18) may now be solved for

(Al - A 2 ) and(Al + A 2 ) in terms of Ao and the coefficients, c n,
Then the resulting linear equations can be solved for A1 and A 2 .
The results are

(c c•+ c 2 ) + " (c + C + 2 (19)

1 0 o- 12 (c +

2 o {[A 2(c -c +c [A z( 22

Finally, substitution of (20) into (16) yields a single equation for
A in the form0

-- (21)

2A [A [A_ (co-c 1 + c 2 ) [A 2 (c + c +c

Equation (21) must be solved numerically for A., and once Ao is
known, Al and A 2 can be determined by substituting into Equa-
tions (19, 20). As the equations indicate, it is possible in principle
to have more than one solution. This is not surprising as it is caused
by the fact that in matching pressures, a nonlinearity is introduced
through the use of Bernoulli's equation. For a specific case, however,
there has been no difficulty in choosing the solution which is physically
significant. 0
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For a velocity ratio (lJ./Uj) 0.4, the coefficients cn calculaied from
Vogler's data have the following values:*

co(l) -0.619 (22)

c(1) ( -0.843 (23)

c (1) 0.287 '24)

A graphical solution of Equation (21) is shown in Figure 19. With the
numerical values given in Equations (22., 23, 24), the left hand side
(L. H. S, ), the right-hand side for positive sign (R. H. S. +), and right-
hand side for negative, sign (R. H. S. -) of Equation (21) are shown in
Figure 19. This figure contains the restriction that A. be real, and
also that it be positive, so that actual and model free stream
velocities will be in the same direction. Evidently, only one solution
is possible, and it lies in the neighborhood enclosed by the circle
labeled'"solution" in the figure. Further iterations in this
neighbo, rhood yield the. value

A = 0. 745, (25)

and substitution in Equatlons (19, 20) (using the + sign) then gives

A 0. 762 (26)

A 2  0. 192 (27)

These results indicate that the nmodel fre• stream velocity amounts to

approximately 3/4. of the actual velocity, so that the model stagnavion
pressure is smaller than that in the actual stream. Furthermore,
since Al is positive, the source is indeed a source, and not a sink.
It is possible to show that the radial velocity at r - 1/2, (which
corresponds to the rim of the jet), is positive. This is contrary to
what would be expected physically since the jet entrains free stream
air and the net effect should be that of a mass sink.

The real test of the model is the agreement with data at values of r
other than unity. Comparisons of pressures predicted by the model
with data for seven rays (6 = const. ) are shown in Figures 20 through
26. Examination of these figures shows disagreement around the

It has been mentioned in Section 2 that due to difficulties with
Vogler's data at large distances from the orifice, this data has in
some cases been adjusted so that C_, will decay to zero. This
adjustment has not been made for tl&e data used with the
phenomrenological models.
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upstream and downstream rays and good agreement only near the

ray e =/2. The accuracy of other results obtained from this model
at different velocity ratios are similar to those described above. Thus,
it can be concluded that this choice of singularities will not yield very
accurate pressure distributions. Also, the velocities obtained do not
behave in the way which would be expected physically.

3. 2. 2 Vortex Model

The second phenomenological model studied consists of a free stream,
a source or sink, a doublet, and, in addition, two vortices of equal
strength but opposite sign located symmetrically in the leeward quad-
rants. The latter are included to represent the vortex motion that is
known to exist in the flow. The location of the singularities is shown
in Figure 27.

In this case, model and free stream velocities are left equal since
two additional unknowns are introduced by the vortex locations.
Normalizing coordinates by the nozzle diameter d,, and velocities
by the free stream value U,, the complex potential for the flow is

w(ý) + +A Ilog; +-+ iA 3 log -oj (28)

where r0o 40 are the complex vortex position vector and its conjugate

ie -je
=r e r r e

The pressure coefficient is in this case given by

Differentiating (28), taking its complex conjugate, and substituting in
(29) gives the result

r2 21

+A A + A A2  I

40) (C-TO t o Z

-A A 1j-A (30)~-2

"A3 to "°C r
2 ~ ~ 0 _____to~ 1 (0
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This expression contains the five unknowns, A,, AZ, A 3 , r,, and 0,.|

These unknowns can be determined in several ways. One would be
to express the pressure coefficient as a five-term cosine series in
0 and equate the coefficients to a five-term series for the data.
Another way would be to use a thnree-term series and equate the
coefficients at two values ef r (i. e., equate three coefficients at one
r and two at another). A third option is to use physical considera-
tions to provide two equations, and match a three-term series to
determine the other three. This third option was taken as being wore
compatible with the physical reasoning which motivated selection of
the model. The physical consideration used is that the vortices should
remain stationary in the x, v plane, and consequently that the vector
sum of the velocities induced at the location of a vortex by all other

singularities be zero. For instance, removing the vortex at o from
the complex potential in Equation (28) and differentiating the result
yields, at , = o

A, A iA 3

Sd •• r° (ýo 4
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SEquating real and imaginary parts of this expression to zero yields
two relations between the five unknowns, which may be written in
the following formICOil 0 A10 (31)

ro 2 A2

( r4A2St "an 0 + I tan 0 (3Z)

The next step is to write Equation (30) as a Fourier series in 8. Due
to the presence of singularities which are not at the origin, the Fourier
series will in this case have an infinite number of terms, instead of
terminating as it did for the doublet model. Of these terms, only the
first three are matched to experimental values of the pressure coeffi-
cient at r -: I. This procedure leads to three nonlinear equations
which are to be solved simultaneously with Equations (31) and (32) for
the five unknowns Al, A 2 , A 3 , ro, and eo.

The derivation of the Fourier series for Equation (30) and the solution
of the set of five nonlinear algebraic equations are quite complicated,
as described in Appendix B. There are a great number of possible
solutions, but one is again chosen on physical grounds. Calculations
were carried out using the coefficients, cn, obtained from Vogler's
data at (U,/Uj) = 0.4 (as for the doublet model, the data was not
adjusted). The numerical results obtained for this case are only
approximate, and further iterations would have been necessary to
obtain more exact numbers. Nevertheless, it was felt that they were
sufficiently accurate for purposes of comparing the model to data in
order to determine its- validity. The numerical values found are listed
below:

A, = -0.121 (33)

A2  -0.048 (34)

A 3 = 0.668 (35)

r 0.64 (36)
0

0 = 36.3° (37)

Note that in this case A1 is negative so that the second term in
Equation (28) corresponds to a sink. The doublet is also negative, so
that it pulls in fluid from the upstream side. A 3 is positive, and the
vortices have the sense of rotation shown in the sketch above. This
agrees with the sense oi rotation of the vortices which have been
observed experimentally.
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The values of 131 ,sstire ccffic f t(nt deterriined i rom the three-ter rt
Fourier series, representation of iqua'iim (301, 'ising the numerical I
values listed in Equations (3f)- (3(), are compared to data in Fig-
ures 20-Z6. F-idently, the agreemIIent is not good. nor much of the :'
0 range, the agreement is worse than for the simpler doublet modtel.
Thus, even though the singularities rcprest'Wing the jet have approxi-
mately the correct behavior expecled on physical groMnds, the
predicted pres.s;ures are not realistic.

The failure of the vortex moddel along the leeward ray is especially
significant, because it poirnts to a fundamental difficulty ,f all inviscid
models which attempt to sihulate Ihe obse rved velo-ities near the
plate surface, including three-dimensional models. It is known from
experiment (Reference 21), that inmmediately behind the jet the fluid
velocity is inward toward the orifice. The presence of vortices in
the vortex model was supposed to account for this fact. Because of
symmetrv and the condition of no flow through the plate, the velocity
vector in the plane of the plate, along the x axis, must be aligned
with the x axis (see Figurc 10). Consequently, if far downstream
perturbationb are to decay and the velocity along the x axis is to
become equal to UI, the flow must reverse direction and havw. a
stagnation point. If n(; account is taken of viscous dissipation, the
nressure at chis stagnation point will be equal to the free stream
stagnation pressure, and the pressure coefficient will be unity. This
difficulty will bc encountered with any inviscid model that attempts to
represent the inward velocity observed cxperimentally, no matter how
complicated. As a matter of fact, the failure of the doublet model to 4

approximate the experi,nent al velocities on the surface may be traced
to the same sources. As the doublet model was originaly envisioned,
the blockage of the jet would he accounted for by the doublet, and the
entrainment by the sink. Aý- it turned out, the negative pressure
coefficient on the leeward side of the jet so influenced the sink strength
that the sink became a source.

3. 3 PRESSURE MODELS

Since the general shape of the interference pressure on a flat plate is
known, model flows are constructed which will yield, approximately,
this pressure distribution. At this point, free parameters are adjusted
to obtain best agreement with data. No attempt is made to qualitatively
reproduce the velocities observed on the surface. With this viewpoint,
it is clear that the results obtained from the model should have a high
pressure region on the windward side of the jet and a low pressure
region on the leeward side. These both asymptotically decay to free
stream pressure at infinity. To avoid the difficulties encountered with
inviscid models in the previous sectioni, the velocity induced by what-
ever represents the jet must be in the same direction as the free
stream on the leeward side.

The simplest model that will meet these cr'iteria is a source in a free
stream. Two models of this type have been developed. The first uses
the same assumpt*on of two dimensional flow in the x, y plane (Fig-
ure 10) and consists of a two-dimensional source and a free stream,
adjusted by the same methods employed for the phenomenological
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n .. •l. IL is referred to as the "source model." The second model
is fully three dimensional, and it consists of a free stream super-

* imposed on axisymmetric flow through an orifice. It is referred to
as the "orifice model."

3. 3. 1 Source Model

The source model is dcrivcd from the potential for a two dimensional
source in a uniform streim. This model is similar 'o the doublet
model discussed in Section 3.Z.1. It is simpler than the doublet model,
but it yields pressures which agree better with data than those cal-

r culated from the doublet model. The complex potential for a source
in a uniform stream is simply

w = Ao, + A1 log (38)

As in Section 3.2. 1, the model and actual flows are here assumed to
have different stagnation pressure and free stream velocities. Theabove potential has again been normalized by the actual free stream

K velocity and bv the nozzle diameter. Using Equations (10) and (38),
the pressure coefficient can be written in real variables in the formt2

21 cos 6  (39)
p r- 2AA 1  r

Note that in this case the Fourier series contains only two terms. As
before, Ao and A, are calcula~ed by equating (39) term by term toea
two-term Fourier series representation of the data at r = 1. For this
case, however, the data of Reference 32 has been adjusted at each
value of 8 so that C will be zero at r = 10. For U./Uj 0.4, the
first two Fourier cA'efficients thus obtained are:

-A c (1) -0,725

-2AoA c (1) -0.823

These yield:

A 0 . 483

A1 0. 851

Comparison of this model with experimental data is shown on
Figures 28-34. As before, these are plots of the pressure coefficient
as a function of the radial distance from the center of the nozzle for
"several values of 6. As can be seen, this model gives quite good
agreement in the vicinity of 0 90*. The agreement near I = 0* or
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I
e yon° is not as good, but it is better than that obtained with the
doublet model. The curves are typical of results obtained for other
velocity ratios. Curves of the values of Ao and Al as functions of the
velocity ratio are shown in Figure 35.

3.3.2 Orifice Model

The orifice model consists of the three-dimensional potential flow derived
by superimposing a transverse, uniform flow on axisymmetric flow
through an orifice. First the velocity potential for flow through a
circular orifice is derived. Then the compononts of the velocity in
the plane of the orifice are determined. A uniform stream norpnal to
the orifice axis of symmetry is then superimposed on the orifice flow
by adding velocity components. Bernoulli's equation is then employed
to calculate pressure distributions in the plane of the orifice.

A derivation of the potential for flow through an orifice is described
by Lamb in Reference 37. The derivation of the orifice flow model
follows basically from Lamb's solution. The coordinate systom of
interest is given by

"7 = k cos s uinhq (40)

T = k sin • cosh r (41)

where the variables T and 7 correspond to dimensional coordinates
as defined in Figure 10. The constant k is an as yet unspecified scale
length. Squaring and comblrinng Equations (40), (41) yields

-2 _2r z (42)

k sin • k cos

Equation (42) represents a family of hyperboloids of revolution (since
it is independent of 0). The hyperboloids have foci on the circle
"7 = k, -i = 0. The variable 4, in a parameter that varies from hyper-

boloid to hyperboloid. The value • 0 corresponds to the line 7= 0.
The value / = iZ corresponds to the plane T = 0 with the circular
region I < k removed. Values of 4 between 0 and Tr/2 correspond

to hyperboloids between these two limiting cases. Negative values
of g are not considered since F is always positive. Combining
Equations (40) and (41) in a different manner yields

_2 .
T + z - (43)

h 2 cos h 2 k sinh ,I

so that lines rI constant correspond to confocal ellipsolds of revolution
with foci on the circle 7F k. The coordinates are shown in Figure 36.
From this figure it can be seen that a solution of Laplace's Equation in
the (4, q) system in which lines • = constant correspond to the stream-
lines will transform u.der Equations (40) and (41) to the flow out
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of (or into) an orifice. In terms cf (4, 1) coordinates, the equation of
continuity becomes:

7ý - ý a : (44 ).

where:

= sinh 
1

S= velocity potential

Any dependence on 0 drops out since the flow is axisymmetric about
the 7 - axis. Since thc. coordinate system is orthogonal, and so are
the streamlin2s and eqyipotential lines, it follows that if • constant
is to be a streamline, then i ý const should correspond to an equi-
potential line. Therefore 0 must be only a function of rl--and
consequently only a function of v. With 0 a function of v only,
Equation (44) may be integrated once to y.eld:

"j+ V con t. -A (45)

which can be integrated again to yield:
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- A cot v (46)

The orifice flow velocity components parallel to the plane of the orifice

are given ,,y

-~ -aO

a nd

Vr

Equations (40), (41), (46) are combined with these equatinns to yield
the velocity components

(A/k) sin t tan h1 (47)
sin Z sinh2 l + cos z cosh 2 

T(

and

(A/k) cos 448)
z sin 2 sinh 2 c+5os 2 zcosh 2 ?I

It may be shown that these vel,,cities satisfy the boundary conditions
of the problem. It may also be show.'n that for very large distances

from the aperture the ve-locity decays like the flow from a three

dimensional source, as would be expected.

Although it is evident from Equation (42) that the constant k

corresponds to the radius of the orifice, the constant A in

Equations (47), (48) is still to be determined. It can be fixed in

terms of the volume Clow rate out of the orifice. Defining V as

the volume flow rate

k
V = 24 v P d F)((49)

and substituting from Equations (40), (41), (48) gives

VA = -- (50)

The effects of the free stream can be introduced by adding appropriate

components of U,, vectorially to the velocity components on the plate

surface. Since as shown in Figure 36, the plate surface corresponds

to i = n/2, the radial. velocity component due to the orifice flow is,

according to Equation (47)
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velocit ve = sinha cosh cn

The transormation Equations (40), (41) become, at l y:/2,

r" = k cosh 0

V -U sinsoThe vlcthes caboena be wrbsitutednBenul'eqai,

r r

Referring to the polar coordinates of Figure i0, the free stream
velocity vector has the following components along the ? and 0
directions, respectively: . . .

-Vr... = U~ocos O

V~o =--Uo sineO

The velocities can be substituted in Bernoulli's equation,

-2 -2

(PVU/Z)r VTk or' ( r 1) riI T 2

to yield the interference pressure coefficient in the form

CI (V/zirk~u) 2  (V/l~k2 U•) cos 0 51
Cpr 2(r2- 1) r' •r' 2 -1

In Equation (51), the pressure coefficient for the orif.ce model con-
tains two undetermined parameters. These are the volume flow V and
the scale factor k. In considering ways to match Equation (51) to data
for obtaining V and k it was found, in this instance, that it was best
to assume that the model and actual jets heve the same volume flow
given by

V 2k2 U.

Equation (51) then becomes,
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rr

The scale factor k, however, should not necessarily be set equal to the i
radius of the actual jet exit, but left to be determined as an effective
orifice radius.

The data of Vogler in Reference 32 show positive pressure coefficients
in the region upstream of the orifice, which indicate the predominance
of blockage effects for velocity ratios Um/Uj greater than 0. 2. For
velocity ratios close to unity, where the effect of the jet is primarily
blockage, and in the underexpanded jet case of interest there is prob-
ably a large separated region behind the jet. Thus, the jet appears to
the subsonic free stream as an obstacle considerably larger than the
size of the orifice. As the velocity ratio decreases the entrainment
ir.creases and the apparent obstacle size of the jet decreases. It is to
be expected then that (k/dj) will decrease as the velocity ratio (U!/Uj)
decreases. The numerical values for k are found by comparing Equa-
tion (52) to the data of Vogler along the rays 6 = 00, and 0 = 1800. At
a fixed value of (UC/Uj), the scale was adjusted for an approximate
best fit, and a value for (k/dj) deduced. The relationship between
(k/dj) and (Uw/Uj) which yields consistently good results in the appli-
cation of Equation (52) is shown in Figure 35. The curve may also be
represented empirically by the relation

k 0. 1.874 j)+ 12153() U0813(

A comparison of Equation (52) with the data of Vogler (Reference 6)
for the specific case U,/U= - 0.4 is made in Figures 28-34. It is
recalled that the data has Seen adjusted at each value of 0.

Agreement is good near the windward and leeward planes of sym-
metry, but not too good near 0 = T/2. In this neighborhood the decay
predictea by Equation (52) is too fast to properly represent the data.

3.4 PRESSURE MODEL COMPUTER PROGRAMS

A computer program has been developed which calculates pressure
distribution, interaction forces, and interaction moments on flat
plates and cylindrical shapes, using the pressure models described
in Section 3. 3. The program is coded in the FORTRAN IV pro-
gramrnming language for use on the IBM 7094 computer.
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3. 4. 1 Flat Plate Interaction Forces

The data analysis and calculations of pressures by the computer pro-
gram are carried out for the plane of the jet exit. The program
requires either a set of pressure data in that plane, or the values for
the empirical data fit Fourier coefficients and singularity strengths
for the source model.

Three different methods of calculating the pressure distributions can
be accomplished by the program. The first is either an empirical fit
of the data which was input, based on a five-term Fourier series, or
the pressure distribution calculated by the same resulting equation

2

C= I cn cos (nO) (53)
n=o

based on the input Fourier coefficients, cn. The second alternative
is to calculate the pressure distribution by the source and uniform
stream model, as giveli by Equation (39). The third alternative is to
calculate the pressure distribution based on the orifice flow in a uni-form stream model according to Equation (52).

After the pressure distribution is calculated, it is integrated in the
plane of the jet exit to yield interaction force and .noment coefficients.
The integration of the input pressure distributions is accomplished
numerically in the coordinate system shown in Figure 10. In thatcoordinate system, the numerical integration scheme is given by

C - ) i& (54)N S, Z Cpr. 2e)

and~

and

CM y >; s r ip (ri, 0,)cos (0 1 )AA i (55)
w e

where
0/, 1- 1]. ri÷l - ri_ 1[r+l +r i-I

AAi 1 21] + ro (56)

The pressure integration for the source model can be accomplished
analytically by integrating Equation (39). The orifice flow model
interference pressures are integrated numerically to smooth effects
of the singularity at r' = I.
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_ 3. 4. 2 Interaction Forces on a Cylinder if.

vide pressure distributions only in the plane of the jet exit. However,
an approximation and coordinate transformation have been introduced
in order to calculate pressures on a cylindrical body and integrate
them. The pressure distribution on the cylinder is a.;proximated by
wrapping the plane of the jet exit into a cylinder. This transformnation
is made in such a manner as to maintain constant distance on the sur-
face between the jet exit and the point (S, 0) ir. the p1..ane located by the
polar angle 0 as shown in Figure 37. The transformation is given by
the equations

JJ
X.- x = lsin 9 (57)

y = ?Icos 0 (58)

Z = 4R 2  12 sin26 (59)

where the distance r is determined by numerically evaluating the
integral

A..

IR

Figure 37. Coordinate System For Cylinder Projetion of Exit Plem
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J -n' o- dT' (60)_J[ R f t je ext a t

to determine the upper limit, TI.

The pressure coefficient at the point (S, I) on the cylinder surface isgiven by the pressure coefficient in the plane of the jet exit, as the

average value (i ] p I

Cpif [C (0 r)+C (i, r + C (ei+ rI+I)Pit i p 1+1

+ Cp (6+, r (61)

The associated area increment, •Ai is the projection in the

x, y plane shown in Figure 37.

In the program, the pressure coefficients given by Equation (61) are

coefficients

CNi it 62)

and

__C N.. &d~lA~ (x -x + x )(63)
M SRL R 1  2 i cg it

where the moment is referred to the point xCg.

The output of the program includes the coefficients CN and CM as well
as the pressure distribution on the cylinder.
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Section 4

CONTROL EFFECTIVENESS PREDICTION
FOR SUPERSONIC FLIGHT

One ,najor objective of the study reported here has been to develop a
computer program for predicting JI control effectiveness for
axisymmetric missile& in supersonic flight. The analysis inethod
employed In the computer program which has been developed is based
on the equivalent solid obstacle in inviscid flow analogy. The analogy
and its basis are described in detail in Reference 19. In this section.
improvements Qnd increases in capability and flexibility of the program
are described. A description of the program and instructions concern-
ing its use are contained in Appendix C.

4. 1 CENERAL DESCRIPTION OF THE PROGRAM

The final version of the equivalent solid obstacle program calculates
static stability derivatives and Jl amplification factors for axisyrn-
metric missiles with circular lateral jets. The jet location on the
vehicle is arbitrary and all parameters are calculated as functions of
angle of attack.

The equivalent solid-obstacle analogy was described in Reference 19
and is based on a momentum balance criterion that is independent of
viscous or geometric effects. It is required that the free stream exert
a drag force on the jet plume as it accelerates the jet fluid downstream.
The equivalent circular cross-sectional area of the plume is calculated
by the method of Reference 19 and the jet plume is replaced by a solid
obstacle, a hemisphere-cylinder having the same frontal area.

The key assumption involved in the equivalent-body analogy is that the
jet plume can be replaced by a solid obstacle. It is further assumed
that the shock-wave pattern caused by the equivalent body alone is
unaltered by the presence of the vehicle surface, and the pressures on
the vehicle surface are altered by a factor equal to the pressure ratio
at the corresponding point in the equivalent-body flow field. The
analysis of Reference 19 showed satisfactory agreement of shock
shapes caused by a jet and an equivalent hemisphe~re-cylinder aligned
with the free stream when these analyses were restricted to jets
exhausting from flat plates. The method has now been extended to
include arbitrary bodies of revolution at angle of attack. It is not to be
expected that the shock shape or details of the pressure field behind the
shock wave will match experimental data, but the integrated value of
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the interaction force should be related to the wave drag of the equiva-
lent body if the flow field is indeed shock dominated. Empirical data
can be introduced to shape and scale the geometry of the disturbed
region.

Although the analysis described herein is based entirely on nonviscous
aerodynamics, an effort has been made to simulate the effects of
boundary-layer separation resulting from the impingement on the
vehicle surface of the bow shock wave caused by the jet plurme. The
resulting pressure distributions produce more realistic control
moment increments for a given interaction force. The secondary
viscous effects altering the pressure distribution in regions of high

velocity gradients have been neglected.

The equivalent solid obstacle analogy has been combined with an
existing surface pressure integration technique currently operational
at MDAC-WD. The integration technique, described by Timmer and
Stokes in Reference 38, is based on local inclination pressure laws
and is used to predict and integrate surface pressures on bodies of
revolution at angle of attack. On that portion of the vehicle in the
region of influence of the jet, the surface pressures are multiplied by
pressure ratios determined independently by a method of character-
istics analysis of the axisymmetric equivalent body flow field.

The complete analysis method has been automated and is currently
available in the form of a MDAC-WD FORTRAN IV computer program.
Equivalent body flow fields (i. e. , pressure distributions and shock
shapes) for a unit hemisphere-cylinder have been calculated. These
flow fields were calculated for the local undisturbed (jet off) Mach
numbers { MI } at the jet location on the vehicle surface. The jet
penetration height is then calculated and the equivalent body flow field
is scaled accordingly. Finally, the pressures are integrated over the
vehicle surface taking into account the presence of the jet. In this
manner, the angle of attack variation of force and moment amplifica-
tion factors and vehicle aerodynamic coefficients can be determined
for any combination of jet location and jet pressure ratio.

In this section the application of the equivalent body analogy to
simulate the presence of control jets on bodies of revolution at angle
of attack is described. Appendix C contains detailed flow charts and
specific instructions for using the computer program.

4.2 VEHICLE GEOMETRY

The vehicle surface is described with respect-to body-fixed axes
(x, y, z) with the origin at the nose and the positive x-axis as the axis of
symmetry. The vehicle may be made up of one to eight components
which are described in the x-z plane as straight lines, circular arcs,
or arbitrary curves. Each component is then subdivided into eight
patches, each subtending a 45° angle on the surface. A 16 rectangle-
per-patch intrgration mesh is constructed on all patches upstream
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of the jet. Aft of and including the patch on which the jet is located
the mesh fineness is increased to 64 rectangles per patch. As indi-
cated in Figure 38, the free stream velocity vector is specified to be
in the x-z plane, so consideration of the half-space y < 0 (and there-
fore only 4 patches per component) is sufficient for vehicle geometry
cons ide rations.

4. 3 ANGLI.-OF-ATTACK DETZRMINATION

The operational method of the prograin requires that calculations only
be made for vehicle angles of attack which correspond to specific local
Mach numberu at the jet location, with the jet off. These local Mach
numbers correspond tu those for which equivalent solid obstacle pres-
sure distributions, as obtained from method of characteristic calcula-
tions, are stored on magnetic tapes.

The determination of the vehicle angles of attack a. which produce
the specified local Mach numbers Mi at the jet location requires
a numerical solution of the isentropic flow relations. Different
methods of calculation are used depending on whether relatively
sharp or blunt nosed vehicles are considered.

4. 3. 1 Blunt-Nosed Vehicles

The basic assumption involved in determining the angle of attack for
a specific local Mach number on blunt vehicles it that t0-; fluid wetting
the vehicle, at the jet location, passed through a norrnal, shock at the
nose and expanded isentropically to the local Mi'.ch Au•viber Mi. The
local static-to-stagnation pressure is given by tht isentropic relation

(I (+ M.(64)
Pt 1  2 1

Combining this with the Rayleigh pitot formula,

j • (65)

the static pressure ratio

P _ 1 (66)
P a
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can be determined. The vehicle angle of attack that produces this
pressure is determined using one of the following local inclination
laws:

Tangent Cone (windward surfaces)

P = I +XK2f1 '+[8y+I 2] +2 In Y+I'+1(67)2 1 K?- -+ 2 2•

Prandtl-Meyer (lee side hypersonic small disturbance)

P y K (68)

In the above expressions,
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K- ;M -7 sin a (69)
Ku L

where aL is the local angle of attack and is given by the scalar product

sin a = -U n
L -~-(70)

where L is the free-stream velocity unit vector and n is the
unit outer normal at the jet location,

n = n i + n j+ nz k (71)

a If the jet is on the lee side, the Prandtl -Meyer equation is used and
can be solved for K explicitly. Then, since

VO = isina+kcoso

the appropriate angle of attack is the root of the equation

T(a)- nxsin a + nz coo + a_ -+ :0 (72)

The root can be found by numerical solution in the interval

If, however, the jet is on the windward side, the tangent cone equa-
tion must be used, Since this cannot be solved explicitly for K, an
iterative method is used. In the program, this method is used to
find the root of the function:

G (K) 1- P + K (l+L 1 1 K2 In (4+- + o (73)
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where _ K'. Using the value of K thus obtained, the angle of
attack oi is found using the same %nethod as described above for the
lee side case.

4.3. 2 Sharp-Nosed Vehicles

The problem of determining the angle of attack for a specific local
Mach number on sharp nosed vehicles is slightly more complicated
because of the presence of the attached shock on the nose of the
vehicle. In the case of a blunt nosed vehicle (Subsection 4. 3. 1),
calculation of the pressure ratio P was straightforward and independent
of the angle of attack. For the sharp nosed vehicle, the total
pressure on the vehicle changes as the angle of attack ( and, hence,
the strength of the attached shock) changes. It is assumed that the
fluid wetting the vehicle surface is that fluid which passed through the
oblique shock at the nose on the wý.ndward ray. Thus, tha total
pressure at the jet location is determined by the strength of the nose
shock on the windward ray. It is further assumed that the flow at the
nose is conical. When the vehicle is- confined to small angles of attack
and the flow near the sharp nose (half angle = 6 ) is assumed to be
conical, then the shock strength on the windward ray is approximately
equal to the strength of the shock produced by a cone of half angle
B c + IaI at zero angle of attack.

An iterative procedure is required to determine the angle of attack in

this case. It in reduced in the current analysis to a binary-chop
method of finding the root of the equation

H ( a)- Pl a P? (a); - 0. 3< a < 0. 3 (74)

where lal 0.3 radians was arbitrarily chosen to be the upper
limit on "small angles of attack". The functions Pl(a) and P 2 (a) are
the static pressure ratios determined by shock-expansion theory and
a local inclination law. Hading guessed an initial value of a, the
functions Pl (a) and P2(a) ar calculated and the function H(a) is
evaluated. It can be shown that 1.4 is a monotonic function of a, so
if the function H has the same sign at a * 0. 3 radians, there is no
root in this interval. In that case, no pressure integration is carried
out for the angle of attack corresponding to the local Mach number
MI at the jet location.

To calculate the function Pl(a) for a particular angle of attack, the
windward-ray shock angle must first be determined. An effective
cone half angle Oc = 6 + Jal is calculated, and the shock angle 0s
is given by the following relation from Reference 39
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sin 2M + 9g2 + g, sin 2o g sin 2 .)1
9 2 2 1(92c

" 93 - gl sin2 e (75)

where:

V+1

92;1 "12

g= I+---

Using this shock angle, the static pressure ratio P( a )correspondingto the local Mach number M I to given by

P (a• I= + Y ""1 MI2

12YM21 sin22 - Y +

(Y+ 1) M sin 6 1( -1)M + 2

S[~1)M2 
2(76)

The function P• a ) is n~ow obtained from a local inclination law. On

the windward side, the pressure is obtained directly from the tangent
cone law
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P2 (I ' 2 { + fn + (77).f

where K is known for a given a from the relation

"K- I nx sin v + nz cos a) (78)

On the leeward side, Prandtl-Meyer hypersonic small disturbance
theory is used to yield

Y~ v-1

P 1 +" (79)

The above analysis was carried out for sharp nosed vehicles assuming
an attached shock. To as-sure consistency, a check is performed to
vcrify that the shock is attached. The new equivalent cone angle is

o = 6 + IllC

For a given free-stream Mach number M.. , the shock is attached on
cones of half angles b < 0 M, The angle IM is given in Reference 39
by the equation T

91 I-= (80)

If the shock is detached. the windward ray streamline is considered to

have passed thr-g.,h a normal shock.
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I 4.4 EQUIVALENT BODY SIZING

The procedure used in sizing the equivalent body is exactly the same as
that presented in Reference 19. That is, the radius of the hemirphere-
cylinder is assumed to be scaled by one-half the jet-penetration
height, hI. Tho height hI is given by the expression

(4-

h :_

where Cx , the equivalent body drag coefficient at the local Mach
number M1 , is given by

11/

v+ 11+ 1  ) +)(

at [v+ i (83)

The diameter of the equivalent obstacle, 2 S, is scaled to be approxi-

rnately equal to the penetration height when the penetration height is
five times larger than the vehicle diameter at the jet. When the jet
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penetration height is very small compared to the radius of curvature of
the vehicle surface (i. e., approaching the flat-plate case), the drag of
the equivalent obstacle is assumed to be associated with half of an
axisymmetric shock. Then the eqtivalent obstacle radius it adjusted
eo that the cross-sectiunal area of the obstacle is half that for the
diameter equal to the penetration height. Between these two extremes,
the ratio between the cross-sectional area of the equivalent obstacle
and the vehicle cross-sectional area at the jet, Ab, is scaled
exponentially. The equation emp.oyed for the adjustment is

11 ~b j

+ep[ I
where A* -- 2rA/4 and g = 0.00736.

4.5 VEHICLE SURFACE PRESSURE INTEGRATION

As local inclination pressure laws are used, the pressure on a partic-
ular mesh element outside the equivalent obstacle shock, depends only
on its orientation with respect to the free-stream velocity vector.
However, if the element lies within the interaction region, its pres-
sure is multiplied by a static pressure ratio associated with the
corresponding point in the equivalent body flow field. To check whether
a mesh element with coordinates (x, y, z) lies within the interaction
region, the point must first be transformed into the coordinate system
of the equivalent body.

4. 5. 1 Equivalent Obstacl, Coordinate System

In the equivalent body analogy, the hemisphere-cylinder is assumed to
lie parallel to the local flow velocity vector. Since the equivalent
body flow field data are specified in an axisymmetric coordinate sys-
tem X'=R' with the origin at the nose, it is appropriate to place the
origin of this coordinate system at a point (xo, Yo, zo) out a distance
SI = 1/2 h! along the unit outer normal (nx, nX, nz) from the jet loca-
tion ( Zx, ', zjý as shown in Figure 39. The X1 axis is aligned with the
local fLow velocity vector. Since the equivalent body flow field corres-
ponding to a local Mach number M 1 is based on a hemisphere-cylinder
of unit radius, all coordinates (x, y, z) are divided by the scale factor
S, so the X'-R' coordinate system is compatible with the equivalent
body coordinate system.
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K I
Khe appropriate transformation is derived by first expressing XI and

R' in terms of the point (xl, yl, zl) on the XI axis nearest the desired
point (x, y, z)

' (Xlo + (Y ( -Z (84)

1/2

R' [(x,-x 1 )2 + (y-y1)2 + (,z:z 1)Z] (85)

The coordinates of the point (xj, yl,. z,) are determined by two condi-
tions: first, that it lies on the X' axis,

x Xl 0X YJ "Yo zI "z° (0
ux - uy - (86

Yn i

U Iiii

Figure 39. Coo•dlmt System For Equkiumt ody Finw Id
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and second, that the line from (x, y, z) to (xI, yl, zl) is normal to

the X' axis

[x _yI). (Y-_Y), (z-z)] I [],u u ,, I 0 (87)

Solving these equations simultaneously gives

( ) 2 )(2 (88)

u 2+ u 2+ u

= y + (z- z) (89)

xl + A (Z - z) (90)
0uz

4. 5. 2 Inviscid Interaction Region

The interaction region is defined as that part of the vehicle where the
'urface pressure is affected by the presence of the jet. A purely

inviscid analysis would locate this region downstream of the line where
the equivalent body shock intersects tIe vehicle surface. In that case,
a considerable portion of the interaction force would be concentrated
along this line due to the spike in the resultant surface pressure profile.
Experimental data presented in References 16 and 17 show a gradual
rlse to a peak pressure which is much less than the predicted inviscid
value and then a gradual decay to the undisturbed pressuio. The
effect of viscosity therefore is to "smea " th spike in the inviscid
pressure profile by raising the pressu rough shocks asso-
ciated with boundary-layer interactir. ace ,,pstream of the
inviscid shock impingement line. I, id version of the
analysis, an option is included whic .. 6e viscous effects of
reducing the peak pressure and enlai 'eraction region into
an area upstream of the shock impingt. . ;e.
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In the inviscid case, the interaction region is defined by requiring that
the inequalities

X1 X1 < Xm

R' < R'

be satisfied. The upper bound X'max is the known limit of the
equivalent-body flow field and R'max is the shock radius at that
X' = X~nax. The shock abscissa Xs is given by the equation

9
X' (R') - •' CmRrnI

X ( C M (91).mffi

In the program operation, Equation (91) represents an empirical fit of
the shock shape from the method of characteristics solutions.

If the point (X', R') is found to lie within the interaction region, the
pressure asmignedtothe associated incremental surface area is deter.
mined by scaling the undicturbed pressure at(X', R')bythe pressure it
the nearest point in the equivalent obstacle pressure distribution. With
the undisturbed (jet off) pressure at the point (XI, R1 Ionthe missile
surface denoted p(X', R'), the disturbance pressure at (X, R')is givon
by

p(X', R') P c

where
p - = p (M, X , R', S)c P c

is the pressure ratio inthe equivalent obstacle pressure distribution
at the point (X', RI). The nearest point inthe characteristics pressure
distribution is found by a hunting procedure based on the fact that the
characteristics points are arranged in order of ascending x-coordinate.
Hunting for the nearest point may therefore be confined to a circle of
radium

d =-rin {IR l min

around the point (X', R'). The relatively small amount of computing
time required with this streamlined hunting procedure made surface
fitting the equivalent-body pressure field unnecessary.

An empirical adjustment has been made in the program that limits the
extent of the interaction region in the vehicle cross -sectional plane.
The limitation is on the radial angle from the jet, in the cross-
sectional plane. No pressure scaling because of the -'isturbance is
done beyond an angle of 150" away from the jet. Thi,. ,djustment was
made because it is known from flow visualizazi~n ir wi d-tunnel tests
that the jet bow shock dissipates in the cross-e-.e' .&I .'ano.
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4. 5. 3 Boundary-Layer Separation Effects Ii
The interaction of the jet-induced bow shock with the boundary layer
is shown schematically in Figure 40. Tae flow geometry and the
corresponding pressure distribution are sLown for a longitudinal plane
located some distance laterally from the jet nozzle. TLe geometry of
the lambda-type shock pattern shown is quite speculative as there is no
direct way of actually observing these details in a three-dimensional
experiment. The details of the interaction phenomena must, therefore.
be surmised from the measured pressure distributions. The inter-
action of a swept planar shock with a laminar boundary layer is ana-
lyzed in some detail in Reference 40. It is reported there that at least
two plausible flow models can be postulated which will produce the
observed results. Further, it is possible that either type of shock
structure may exist, depending upon the state of the boundary layer,
the Mach number, the shock strength, and other parameters.

As indicated by comparing the viscous and inviscid pressure distribu-
tions illustrated in Figure 40, the primary effect of the boundary
layer is to reduce the peak pressure and to distribute the load over a
greater av.ea. The initial pressure rise occurs as a result of either a
thickening or separation of the boundary layer ahead of the shock loca-
tion. A fully separated boundary layer with reverse flow probably
occurs only quite close to the jet, where the local pressure gradients
are high. Over much of the disturbed area only a local thickening of
the boundary layer occurs.

The maximum pressure at the wall probably occurs just downstream
of the main shock at the location of the rear leg of the lambda shock
pattern. The pressure decay downstream of the peak then follows
quite close to the inviscid pressure profile, because there is no mech-
anism in this region to support a large pressure gradient normal to the
wall.

The interaction force is dependent upon the distance that the boundary
layer is affected (Xs-Xl in Figure 40)as wellas the peak pressure.
Numerous attompts have been made to correlate this or related dis-
tances with the pressure rise for two-dimensional separated boundary
layers. For example, the results of Needhan and Stollery in Reference
41 are correlated by Equations 13 of Reference 19. In another ana-
lysis more applicable to the present situation, Hakkinen, et al. , in
Reference 42 correlate the extent of boundary-lay.er separation pro-
duced by two-dimensional incident shocks. They conclude that the
extent of the separation should correlate with the "driving pressure"
which induces the separation. The driving pressure is taken to be the
difference between the "final" pressure and the pressure required for
incipient separation. In the two-dimensional separation analysis of
Reference 42, the final pressure is equal to the inviscid pressure
behind the shock. Though their correlation is not directly applicable
to the present analysis, it is reasonable to expect that somewhat
similar trends may exist. In their analysis (which they verified by
experiment) they showed that the separated length varied almost lin-
early with the difference between the final or inviscid pressure and the

so
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plateau pressure. Assuming a similar behavior may exist for the
more complex three-dimensional case of interest here, the distance
(XB-XIp in Figure 40 should increase as the pressure difference
(Pin. - Pexp) increases.

An empirical hyperbolic curve fit for the shape of the bow shock caused
by jets exhausting transverse to a flat plate is presented in Reference
19. The equation for the shock radius (R) normalized with respect to
the jet height (h) is

z

FR )z 1 O -3/Z + ]. 6.25

where

2
-... ..

and x is the distance downstream of the shock apex. Differentiating
the above equation provides the local shock angle (6), in the form

2 tan2 = +6.25 (93)

(R/h)2

The shock angle, combined with the expression describing the pressure
rise across an oblique shock in air, yields an equation for the pressure
(Pinv) immediately behind the shock, in the form

-l

Piny R\I M +2 (94)
N " Pl LEh/ 6.250 +(

where pý, is the pressure behind a normal shock. This expression
provider' the pressure which would exist immediately behind the shock
(Pinv in Figure 40) in the absence of any viscous effect@ and is the
pressure immediately behind the main incident shock outside of the
shear layer illustrated in Figure 40.

The measured surface peak pressure must be closely related to the
pressure which exists behind the shock outside the shear layer.
Therefore, one would expect that experimental data should correlate
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with the same parameter which governs the inviscid pressure rise.
Experimental values of the peak pressure are presented in Figure 41
in terms of the parameters suggested by the form of Equation 94. The
inviscid pressure computed from Equation 94 is also presented for
comparison. As shown, the experimental pressures are small com-
pared to the predicted inviscid values. The characteristic plateau
pressure for a two-dimensional turbulent separation is also shown on
Figure 41 for the Mach numbers of the test data from References 16
?.nd 43. It is seen that the maximum pressure can exceed the two-
dimensional plateau pressure near the jet; these points correspond
to the "second peak" pressure which occurs immediately upstream of
the jet. In general, however, the pressures are substantially less
than the two-dimensional values. A curve fit of the experimental data
is provided by

NPexp" Pl) 0. 4e -0.8(R/h)Mp" 11/2  (95)

In the equivalent obstacle analogy computer program, Equation (95) is
used to account for the effect of boundary layer separation on the
interactionA control moment. The inviscid flow pressure distribution
downstream of the bow shock is distributed over a distance extending
from XI upstream of the shock to X2 downstream of the shock, as
shown in Figure 40.

The distance X. is determined by truncating the inviscid spike in the
pressure profile at the experimentally observed value determined
from Equation (96) and redistributing the remaining interaction force
into a region of constant pressure gradient upstream of the shockimpingement line. The value of the constant pressure gradient, and,

hence, the distance X1 upstream of the shock, is fixed by the require-
ment that the interaction force due to the spike.

4F = Pinv'Pexp)(XZ X5 ) (96)

equal the area under the upstream triangle. This requirement gives
the nondimensional ratio

-1

52 X 1 L0 '~~x x (L97)
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where Pinv is the calculated inviscid flow pressure and Pcx- 4 theexperimentally determined value as given by Equation (95). By defini-
tion then, any point with coordinates (X'l, R') such that

X" < X' < X*1 u s

where NJ < R~nax , has a pressure ratio Pu = Pu/Pl associated with it.
The pressure ratio, Pu, is given by

X1 _X1
P =p + U (I exp) (98)u expX' -X'S8 1

For any point (Xb, Rj) such that

S~X, < Xb _S X2

and R) < Rna, the associated pressure is given by Equation 95 as

NOZZLE CHARACTERISTICS: AFT
C IRCULAR NozzLC,
dt -0.11 C
Mj •LO FORWARD NOZZLE

1,.!4NOZTL L _I I I o.68,rN, I+ ~ ~ + .375

6.000
7.815

* 12.375

Figure 42. AMICOM Reaction Jet Force Model
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For 0 th (BTJLPRORMEUT ~ (99)
rD - exp i+.4(N i) exp -0.4 1.D l/MI (9

For points in the interaction region downstreanm uf X 2 , the inviscid
pressure scaling method discussed in Subsection 4. 5. 2 is employed.

4.6 EQUIVALENT OBSTACLE PROGRAM RESULTS

The equivalent obstacle analogy program has been used to predict
amplification factors for a variety of configurations and flow conditions
for which wind tunnel data are available. The only check on the validity
of the analogy is the accuracy of such force and moment data compari-
sons, since details of the flow are not simulated. In Figures 43 to 50,
some data comparisons are shown for the AMICOM wind tunnel model
illustrated in Figure 42 (for details of the model see Reference 31).
These comparisons are representative of the general accuracy level
achieved with the computer program applied to other flow conditions
and missile geometry. Results are generally better for aft located jets
and higher freestream Mach numbers. For all the following data corn-
parisons, the jet is at the center location indicated in Figure 42. All
moments are referred to the nose and the jet is on the leeside of the
model at positive angle of attack.

The basic -normal force and pitching moment coefficients are shown ver-
sus angle of attack for M.= .3. 0 in Figures 43 and 44. For these coeffi-
cients, the variation with pressure ratio is due principally to increasing
jet thrust. The basic accuracy level of the jet-off aerodynamics pre-
dictions at low Mach numbers is shown in these figures. Better accur-
acy is achieved at higher Mach numbers.

In Figures 45 and 46, force and moment amplification factors are shown
as functions of angle of attack and Mach number. As indicated, the
accuracy of the prediction method is worse for lower pressure ratios,
particularly when interaction forces are negative. This is believed due
to lack of proper compensation for low pressures aft of the jet on the
missile surface. The angle of attack effects are difficult to generalize
because of limited extent of the data.

Prediction of force and moment amplification factor sensitivities to jet
thrust are shown in Figures 47 and 48. Again, the low accuracy level
at low thrust can be observed.

At a constant pressure ratio, the sensitivities of amplification factors
to Mach number are shown in Figures 49 and 50. The gene;..al accuracy
level indicated for this relatively high pressure ratio is be'leved to be
as good as can be expected from the analogy, for this type of configura-
tion (i. e. , forward jets).

It is believed by the authors that progress must be mnide in basic
understanding of three dimensional effects due to JI bow shock dissipa-
tion and viscous effects downstream of the jet plume before significant
increases in the accuracy level of amplification factor predictions can
be made. In the interim, the equivalent obstacle analogy method
appears to offer as accurate a prediction scheme as is available.
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Section 5

JET-FIN INTERFERENCE EFFECTS

Transverse jet-induced interference effects in subsonic or supersonic
mainstreams have been divided into the two general categories, near-
field effects and fin-interferen~ce effects. Near-field effects are con-
fined to the neighborhood of the nozzle and represent the direct JI
effect in amplifying or degrading the force and moment which the jet
thrust would produce in still air. In the category of fin-interference
effects are phenomena assumed to occur many nozzle diameters down-
stream, where the deflected jet may interact with aerodynamic control
fins. The discussions in Sections 2 through 4pertain t9 the'near-field
category of JI effects.

The calculation of fin interference effects has been restricted to
vehicle configurations where the fins lie at a considerable distance
downstream of the transverse jet nozzle exit. It is assumed that at
these downstream distances, the jet is almost aligned with the free
stream. It is further assumed that the jet has been reduced to two
counterrotating vortices and a region of turbulence whose average axial
velocity is almost equal to the free stream velocity, Models have been
developed that predict the variation of vortex strength with distance
from the nozzle exit and other jet and free stream parameters, for both
subsonic and supersonic free-stream Mach numbers. With the strengths
and location of the jet-induced vortices known, interference forces and
moments due to far downstream interactions between the jet and
fins can be calculated. The methods developed in this study are appli-
cable to cruciform missiles at arbitrary flight Mach numbers and
attitude s.

A complete solution of the interference problem requires a knowledge of
fin-jet interference effects as wtl11 as of jet-fin interference effects.
That is, the effects of the body and fins upon the jet trajectory, vortex
strengths. etc. should be estimated. However, it is assumed here that
fin-jet interference effects are small, and that the jet behaved at all
times as if it were exhausting into a uniform, infinite crossflow. With
this restriction, the calculation of jet-fin interference effects is broken
into two parts. Firsti a serni-empirical model of the jet in an infinite
crossflow, valid at large distances from the orifice, in developed.
Second, the interference forces induced by the jet are calculated.

Iii

5.E1 GENERAL CONSIDERATIONSREC

For subsonic Mach numbers, data such as those shown in Figures 7
and 8 indicate that fhe major interference pressure disturbances are
confined to a distance of five or sixaMach drsk heights from the
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centerline of the nozzle. For supersonic flight Mach numbers, data
such as those shown in Figure 51 indicate the major interference nor-
mal force occurs less than ten penetration heights downstream of the
jet exit. In Figure 51, the normal force increment is defined as

Cz =(cZ) - (cz)
fin on fin off

with the jet and mainstream flow conditions the same with fin on and
fin off. The configuration is described in Reference 19 or 31. The
conclusion to be drawn from the limited extent of the major interaction
disturbances in either subsonic or supersonic mainstreams is that fine
located downstream of this region will encounter relatively small pres-
sure disturbances. However, the resultant interference control
moment due to fin interference may still be large.

Some of the data from the AMICOM-CAL tests (References 27
and 28) were obtained with instrumented, cruciform rectangular
fins on the model to measure interference forces on the fins.
The configuration shown in Figure 4 corresponds to the tests
in Reference 27, and for this case the sensitivity of the fin
force and moment balance was apparently too small to detect
the interference forces. For the tests described in Reference 28,
however, a more sensitive balance was used, and significant
interference forces were measured.

The data of Burt and Dahlke in Reference 44 show that, for a configura-
tion with opposed transverse jets, the strongest fin interference effects
occurred when the fins nearest the jet plumes were placed in a slightly
asymmetric position relative to the plume. The most significant fin
interference effects appear to be caused by the two counterrotating
vortices created by the interaction of the jet and the cross flow. In
References 45 and 46, Dahlke has measured the strength of these
vortices at one station downstream of the nozzle, based on flow field
surveys conducted with a special probe.

In the present study, several assumptions have been made, based on
the available experimental data, to derive a semi-empirical mathe-
matical model for jet-fin interference. It is assumed that, in the
region where the fins lie, the jet is almost aligned with the free stream.
Indeed, it will be assumed that the fins lie within the "vortex zone" of
the jet, which has been discussed at the end of Subsection 2. 1.
Restricting the analysis to small missile angles of attack then permits
bringing the entire fin interference problem within the context of the
slender-body approximation (i. e., of croseflow velocities that are much
smaller than the free-stream velocity). The above restrictions are
satisfied by configurations of practical interest, as examination of
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I.

Figure 52 as well as the configurations tested in References 31 and 44 5
will reveal. Some of the data leading to the assumptions will be illus-
trated below.

5.2 JET PROPERTIES AT LARGE DISTANCES FROM THE NOZZLE

It is known that a jet in a subsonic or supersonic crosasflow contains two
counterrotating vortices. This is true of subsonic (References 21, 22,
and 23), as well as sonic or supersonic, highly underexpanded jets
(References 16 and 46). For example, Figure 52, which has been taken
from Dahlke's report (Reference 46) clearly shows the two vortex
regions. The vectors in the figure represent the Mach number compo-
nent in a plane perpendicular to the body axis. The circulatory nature
of the flow is clearly visible. For subsonic jets, Pratte and Baines in
Reference Z2 indicate that at large distances from the nozzle the axial
velocity in the jet is almost equal to the free stream velocity. Further,
the vortices are effectively convected at this velocity, while their
strength decays because of viscous dissipation. It is assumed that highly
underexpanded sonic or supersonic jei.s exhausting into subsonic or
supersonic streams exhibit similar behavior at large distances from
the nozzle.

5. 2. 1 Vortex Strengths in a Subsonic Jet

A semi-empirical model to predict the variation in vortex strength with

distance is postulated in this section. It is first assumed that the jet is
everywhere subsonic, but similarities between subsonic jets and highly
underexpanded jets in subsonic or supersonic crossflows are formu-
lated, which allow the results obtained for subsonic jets to be extended
to the latter cases.

The vortices are assumed to be convected downptream at U,, (Fig-
ure 53), and the flow is analyzed as an unsteady flow ii, the y-z plane.
This is consistent with the assumption of crossflow velocities which
are small compared to U.. In the y-z plane, the jet is represented by
two counterrotating vortices located at (-yo, zs) and (yo, zo)*, and con-
nected by a vortex sheet of vanishing strength as illustrated in Fig-
ure 54. The vortex positions and strengths are assumed to depend on
time. From one instant of time to another, impulsive pressures of
different magnitude would have to be applied across the vortex sheet to
generate the fluid motion instantaneously from rest. The resulting
impulse T may be calculated from the relation

T pon ds (100)
C

*As before, these coordinates have been normalized by the nozzle exit
diameter.
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where 1 i- the potc-tia-l of the fluid rnotiont, and p !as the fluid densi-y.
The integral in Equation (100) is evaluated on a path C enclosing both
vortices and their connecting sheet as discussed in Reference 37. For
the vortices shown in Figure 54, the potential may be written as:

0 - tan- (+0 tan- ~j) (101)

Substituting Equation (10 D into Equation (0 00) and performing the inte-
gration, yields:

T = k (2pryo) (102)

where k is a unit vector in the z direction. The rate of change of
Swith respect to time is equal to the net force which must be apolied
to the vortices and connecting sheet system to generate the fluid
motion instantaneously from rest,as discussed in Reference 37. T1.is
force is given by

dT d
= k (Zp) ai (ryo) (103)

In the present development, it will be assumed that vortex strength
and separation must vary in such a way that the net force on the sys-
tem of vortex sheet and vortices is zero. This assumption has been
made by Bryson in Reference 47, in computing lift forces on slender
bodies at high angles of attack. Then Equation (10') 'equires that

d (ryo) = 0

so that

S=K (104)
yo

where K' is constant for fixed U. 0 /Uj and d. Equativr '104) implies
that if the vortices draw apart their strengih must decrease. If
viscous dissipation is included, it seems reasonable that the vortex
strengths should decay; this model, however, is irviscid, so it is
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difficult to explain what happens to the vorticity caused by the decrease
in vortex strength. In Brysonis model of separated flow about a body
of revolution at high incidence, vorticity generated in the boundary
layer about the body is assumed to be "fed" to the separation vortices
through the intervening connecting sheets. No such mechanism may be
used to account for vorticity lost in the present model, since no external
boundaries are present. The only explanation to account for the "lost
vorticity" is that as the vortex on one side decays in strength, a -. rmall
amount of vorticity is carried via the connecting sheet to the plane o"

symmetry, to be cancelled there by the vorticity of opposite sign
arriving from the vortex on the other side.

The vortices shown in Figure 54 will convect upward at the velocity
induced by one vortex at the location of the other. This velocity is given
by

dz
o f"

dt - 4Try dj

and, since the vortices were assumed to convect downstream at U.,

dzO tan • = r

dx 4 Tr U. y d.

where the angle • is defined in Figure 53.

If 1i is assumed to be small so that

tan ýL- ýt - sin ý

then

dz 0 (105)dý 4 TrU oYodj

Given the dependence of yo on ý, Equations (104)and(105)may be
used to calculate the change in F and the vortex trajectory.

In Reference 22, Pratte and Baines find that they can correlate their
data for jet trajectory and thickness by the use of variables scaled by
the jet to free-stream velocity ratio such as

X=•9
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where • is the c irdinate along the jet trajectory shown in Figure 53

and

U

J

Pratte and Baines also find that, in the vortex region, the jet cross-

section grows as X1 /3, apparently in self-similar fashion (Refer-
ence 22). This is the same behavior exhibited by turbulent jets in
coaxial external streams, when the difference between jet and free
stream velocities is small (Reference 48). In the present case it
will be assumed that the vortices also spread as XF/3, so that

Y Y (106)
0 V

where

Y y o
o10



and Yv is a constant which has the same value for all velocity ratios
and jet diameters.

Substituting Equation (104) into Equation (105) yields

*dz /4 K' 1
d~ z

J YO

Written in terms of similarity variables X, Y and

0 0

a' 0 1

this becomes

dZ [K' I ]

and substitution of Equation (106) then yields

di

T, [~~ ~>I (107)

The data of Pratte and Baines show that Zo is a universal function of
X, and consequently it follows from Equation (107) that

K d -K (108)
4 -,rU d.SJ

where K is a universal constant which has the same value for all
vvlocit, ratios. Furthermore, it is possible to integrate Equation (107)
and obtain

x 3K x1i3 (109)
Y

V
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The behavior predicted by Equation (109) for the jet trajectory is I
verified by the data of Pratte and Baines, who measured: !

1/3
Z = (const.) X0

as shown in Figure 5 of Reference 22. Finally, writing Equation (104)
in terms of similarity variables leads to the result

K
K 37 (110)

v

where

4T- rU d .7)(11
-J

Equations (110) and (111) state that the product of normalized vortex
strengths (f/4trUd)di and velocity ratio is a universal function of.
the similarity variagle X.

In summary, the postulatedvariation in vortex spacing Yo, leads to a
vortex strength variation which can be used to predict the correct
form for the jet trajectory. Indirectly, at least, this appears to verify
the proposed relation bztween vortex strengthand spacing. The results
derived are expected to hold in the vortex zone, which has been found
to lie downstrean-. of the value X = 5, as shown in Reference 22. Two
empirical constants have been introduced, K and Yv. These will be
calculated using Dahlke's measurements of vortex strength and posi-
tions. Before this can be done, it is necessary to postulate the equiv-
alence between the subsonic and a sonic, highly underexpanded jet.

5.2.2 Equivalence Between Subsonic and Sonic Underexpanded Jets

The equivalence between the subsonic and sonic jets is formulated in
terms of a scaling length. For underexpanded jets, the scale chosen
in proportional to the Mach disk height or jet penetration height,
depending on whether the free stream is subsonic or supersonic.
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Equivalent similarity variables are defined as follows:

XJI :@e(-) I Z =ed (112)

where:

p U

d : equivalent subsonic jet diameter
e

PeUe equivalent subsonic jet mass flux per unit area

It is assumed that the equivalent subsonic jet and the actual jet have
the same mass flux, so that:

e Ue e d P U d

Thus,

]S e (113)d e e de o j U j d j d

If it is assumed that

T =T

0. 0 i

the mass flux per unit area ratio nlay be written in the form
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and for a sonic nozzle, this becomes:

PWU W ry~ + 71) gpjPo 0 M- (114)

JJ

All variables in Equation (114) are known, but in Equation (1 13) it is
necessary to have a relation between the equivalent and actual jet
diameters. A plausible characteristic scale is suggested by the
behavior of the internal shock system in a highly underexpanded plume.

Considering first the case of subsonic mainstream Mach numbers, it
is assumed that the plume behaves as if it were exhausting into
still air. Then Reference 30 shows that for high values of the pres-
sure ratio (P = po./pm), th~e location of the terminal shock or Mach

disk is proportional to pi/2 multiplied by the jet exit diameter.
Reference 30 also shows that the diameter of the Mach disk varies
approximately as p1/2 multiplied by the nozzle exit diameter. Since
the equivalent subsonic jet diameter should depend on the subsonic
conditions which exist in the jet downstream of the Mach disk, it will
be assumed that

d( 1 dc 6 "- 
1 1

-j MCO< 1

Then, substituting Equations 114) and (115) into Equation (113) leads to the
final relation

"Y+l

= Y-) T7('e +1) (116)
M- .czl M -
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where the quantity 6 is another empirical constant to be obtained from

data.

Considering now the case o! supersonic free-stream Mach numbers,
the relation for the characteristic scale must be changed. As dis-
cussed in Reference 19, the flow field to some extent scales with the
jet penetration height hs. An expression for this quantity is derived
in Reference 19. It may be written in the form

2 2'T 1 P 1=

CY+-.-Z V 1 M0x YM J

where C denotes the drag coefficient of the equivalent obstacle. If,,
as in Reference 19, it is assumed that:.

cx +--w 3

then the above becomes:

a I- (117)J P111

It is also shown in Reference 19 that the Mach disk height is directly
proportional to the penetration height hs. For supersonic free-stream
Mach numbers, then, Equation(17) suggests a relationship for the
equivalent jet diameter in the form
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where is an empirical constant. For supersonic frc streams,
Equation (113) then becomes

Y+l

V + 1•- (119)

5.2. 3 Evaluation of Empirical Constants and Comparisons with Data E
Reference 46 contairs data on vortex strengths and positions for a
sonic, highly underexpanded jet exhausting from an ogive-cylinder for

moo = 0.9 and 1.2. The data were obtained by surveying the flow field
at a fixed station downstream of the jet nozzle and varying (Pot/p ) for
each value of M,. In using these results, the effects of the bddy will
be neglected and it will be assumed that the jet behaves as if it were
exhausting into an infinite stream.

To calculate the values of 6 and E defined in Subsection 5.2.2, some of
the results obtained by Pratte and Baines in Reference 22 will be used.

In particular, if it is assumed that the vortices lie in the same plane
as the jet centerline, then the empirical relation in Figure 4 of Ref-
erence 22 yields the vortex height as a function of the distance X from
the nozzle centerline (Figure 53) in the form

Z =(1.76) X(0. 2 8 ) (120)
0

Using Equation (112), Equation (120) may be written in the form

e 0.389 rl.76 1"389
--= L- 0-d eF

Then substituting for (ve/de) from Equation (116) in the subsonic case,
and from Equation (119) in the supersonic case:

0.38Q

%A (0. 575() f (121)
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(0. 492) Px-)0. 389

M =1.2 ) 1.389
0

The above relations have been written for the specific cases M., = 0. 9and M. = 1. 2, for which Dahlke surveyed the flow field. Since sur-
veys were conducted at b

X = 47.465 in.

downstream of the nozzle, substitution of this number in Equations (121)
and (122) yields:

=• =0.9= (2. 582) 4 1

cc i 0 )

IM =1.2 = (2. 207) 1.389C (Zo

Figure 55 shows graphs of the above relations as calculated froin
Dahlke's data in Reference 46. Although there is considerable scat-
ter, fur pressure ratios greater than 10 the points do seem to lie on a
constant line. Based upcn Figure 55 for P>10, the average values

6 = 1.40 (123a)

= 1.04 (123b)

have been chosen.

Tte theoretical model for the jet vertices implies that Le,.Lain corrbin-
ations of parameters should be independent of the pressure ratio. In
particular, the product of normalized vortex strength and separation
should be constant. From Equation ( 10)
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t' = Ki
oa

Using Equations (III) and (112)

(f~o 4Q ()2] K (124)

For the subsonic case, Equation (1 16) is substituted in Equation (124)
above. This results in the expression:

(K) m <1~ (r \ 1 m15

1.4 - -

1.2---," -

M.
S0.6 - -W 1.2

0.-

0 10 2; 30 40 60 6o 70 so so

JET CHAMUER TO FREE STREAM PRIMURE RATIO, P 1
Figure 55. Scaqe Constants for Equivelnt Subsonic Jet Oiemeten
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For supersonic free streams, substitution of Equation (119) into
Equation (124) yields

Y+ 1
(K)M (>1 (126)

Since the terms in brackets in Equations (125) and (126) are constant
for fixed Mm, Dahlke's data should indicate that the term (rjo /a.P)
is independent of the pressure ratio at each value of Mw. This seems
to be the case, as shown in Figure 56; at least to within approximately
IL% of the averages indicated by the solid and dotted lines in Fig-
ure 56. The values chosen are:

= 0.0615 ( 1 2 7a)

( = 0. 0512 (127b)
M >1

0.07

006

0.02- - __ __- -- .... 0.U6X

• ~§- N-,,,.,2

0101i

OA

o 10____ I4 o____

I~ ~~ I ___ ___

Figure 56. Constant Product of Vortex Stengt~h and Sepuitloi

109

" * bh#bd ~ W ~ k / qd d J • • . . • w7 X -. .-- _ . . .



V!
I

These values, along with6 and i as given in Equations (123a) and (123b),
are substituted into Equations (125) and (126), respectively. The
appropriate Mach numbers and y = 1. 4 are also substituted. The
results are

(K)M < I= 0. 155 (1 2 8a)

(K)M>l = 0.073 (128b)

Equations (128)point to an inconsistency in the postulated equivalence
between subsonic and underexpanded jets. Since the constant K is
presumed to be a universal constant characteristic of the subsonic jet,
the values of K calculated starting from MO < 1 data or M. > 1 data
should coincide.' Since they do not, it appears that to some extent the
postulated equivalences are not valid. Taken individually, however,
both the M. < 1 and M, > 1 data indicate that K is a constant, and using
the appropriate value of K for each case leads to good agreement
between predicted and measured vortex strengths, as is shown below.
The best way to resolve the above difficulty would be to evaluate K by
using experimentally determined vortex strengths lor a subsonic jet
directly, but such data are unfortunately not available.

Referring to Equations (106)and (109), the model predicts that the follow-
ing ratio should be constant.

y 3
o 7o Yv

Z° z 3K

This ratio is shown in Figure 57, for both the M.,,<l and the Ma>I
cases. The data again indicate that for P>10, the ratio is approxi-
mately independent of P, as predicted. The average values:

y 3
v = 0.60-""M.'< i

,i
and

y 3 . I

3K 0. 261
M >1
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have been chosen. Using Equations (l28a) and (l28b) these lead to

Co• VM qI 0..23( ~%

MO" 0.385

Again, some iRconsfV stency is toident since these are not the same.

The above analysis indicates that vorte~x strength varies as a j'utu"tion•
of the sinmilarity variahle, x, which is de:pendent upon distance aloiw. theu
jet axis, prcssure ratio P, and the fres-stram Math numblear
Dahlkc's mo.asurcucnts in Reference 46 were taken at a siXaed local.i,,l

downstream of the nozzle, but since the pressure ratio was varied, t~li

similarity variable X has bcen varied. Thc. m-ocdel should therefor, 1)."

able to predict the variation of r with pres sure ratio. Comibining
Equations (109), (110), and (1Z0), the following relation is obtaired:

3K~ 1

Y 3 (1.76) X 0.28
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Subb LiLuLing for X andi i-ý,ý from Equations (I I I) and (I1 .), and sub-
stituting the appropriate numerical constants it is possible to arrive p
at the following expresions:Ii

_= 0.005 p 0 .6 4  (inches) (130)

= 0.114 P 0 .64 (inches) (131)

The above results hold for x = 47. 465 in., which is the station down-
stream of the orific;e at which flow field surveys were conducted in
Refcrenco 46. Tho above equations are compared to the data in Fig-
ure 58, and it is evident that the agreement is quite good. The formulas
developed above will be used for predicting vortex strengths and posi-
tions at the aft fin location, and thus for calculating jet-fin interference
forces and moments. I

2.8 M 12-___ ___ .I"___- ___
2.4 0 DATA

Moo - 0.9 THEORYTHEORY

goM. 1.2 E DATA

2.0 -THEORY _ _

1.6 I

0.4 ____

JET CHAMBER TO FREE STREAM PRESSURE RATIO, P

Figure 58. Comparison of Predicted and Experimental Vortex Strengths
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5.4 JET-FIN INTERFERENCE FORCES AND MOMENTS

S" The interference effects calculated are the incremental forces and

moments acting on the fins alone, which would be produced by turning
on a control et with the missile at given angles of incidence and bank.r The wceaeral approach iF to fira-t oL.tahi the additional upwash which the
jet vortices produce at the fin location, and then use simple two-

dimensional strip theory for calculating forces and moments on the
fins.

Reference axes and angles which are used in the calculation of forces
and moments are shown in Figure 59. The missile attitude relative
to the free stream coordinates (x*, y*., z*) is defined by the angles of
incidence,e, and of bank, , as in Reference 49. As noted in the
figure, however, the missile is pitched and banked about axes centered
at the nozzle station, instead of about the nose. Forces and moments
are defined with respect to the body-oriented coordinate system (xl,
y', z'). It will be assumed throughout that only one control jet is
turned on; that the jet is sonic; and that the nozzle is aligned with one
of four cruciform fins, as shown in Figure 59.

5. 3. 1 Vortex Strengths and Vortex Locations in the Body-Oriented
Coordinate System

Let I denote the distance along the body axis between the nozzle and
the midpoint of the fin's geometric mean chord (assumed to be approx-
irnately tht fin center of pressure). For purposes of calculating
interference effects, it is necessary to know the strength and location
of the jet vortices. Consequently, a jet-oriented coordinate system is
introduced, with suitable transformations defined below. As the
missile pitches and banks, it is assumed that the jet remains aligned
with the free atream, although the axis of the nozzle banks with the
missile. When the angle of incidence is different from zero, the jet
will no longer be normal to the free stream at the nozzle, but this
effect is neglected because it is small for small angles of attack.

Coordinate transformations between the (x*, y*, z*) axes and the body-
oriented Wx, y , z') axes system are given in Reference 49. They are:

xf = x* cost - z* sine (132a)

* y= -x* (since swný) + y-: cosý - z* (cosa siný) (132b)

zi x* (sin& cos*) + y*, sini + z* (cosa cos4O) (132c)
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Fipre 59. Reference Axes for Fin Intaf rn ce Calcolitions

New reference axes are now inrduc ed, denoted by (x", y", ztf).

These are also centered along the body centerline, at the nozzle

station. The x" coordinate is aligned with the free-stream direction,

and one plane of the system coincides with the plane defined by the

free-stream (or x*) direction and the nozzle centerline (or z') direc-

tion. It is therefore possible to define the unit base vectors Qi', j",

k".).for this new coordinate system as follows: 4•' ¢

i =(133a)

W• x i*)
j" o x (*I i33b)

k" x i* x (133c)

x X Ik r k ~

The is , and kvectors correspond to the x, y, and z directions,

respectvely, in whatever coordinate system is indicated by the super-

script. Equation o 33b)defines the i vector as being normal to the

plane defined by the free-stream d(rection and the nozzle centerline,

and Equation (133c)defirees the o" vector as being normal to the (" and
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I
v '.ectors. Uning tho tran.rn*cL'•,4jUun in Equations (i4, it is possible

to derive the relations between the (x*, y*, z*) axis base vectors and
the (x', yI z') axis base vectors. These are:

S

i* =i (cosa) - j' (sina sin+) + k t (sina cos*) (134a)

j* (cos) + s k' (sin4O) (1 34b)

-i-(sina) -j' (cosa siný) + k' (cosa cos*) (134c)

Substitution of Equations (134) into Equations (133)then g 4ves :

J," =l (cosa)- ' (sina siný) + k' (sinQ cosO) (135a)

I sina in* +cosa '
*~~ [~~i 2ac 2 2"sina cos " , .sin " Cos

k" si cos cost +J ".sin a slO cos4

+_K4 I - sinla cos',6 (135c)

With the base vector transformation given by Equat'vns (135), it is easy
to arrive at the coordinate transformations:• I

x' 1Cosa] + ," [, "m n

.,-f,.o ooo•a 1 (0 36a)

sn a cos. ,
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y I -x" [sinasinO] + y" [ .:~sa_ ] +

+ l sin- g+ co 1 (136b)

1 - sin2a cos 2_ i

z' x" [sin* cos*] + z" l - sinea cosZ (I36c-

Finally, the jet-oriented (i, y, .) coordinate system is defined. It is
the same as the (x", y", z"1 ) axis system, but its origin is located at
the nozzle. exit instead of at the axis of the body. Letting R denote the
radius of the missile at the nozzle location, the transformation
between jel-oriented and body-oriented coordinates is:

x'= [cose] -t sin& sins cosa cosz (137a)

#l •co7sa - sin a cos2

y, - [sine sins0] + j cos sin+ • sin4oz
-sin-acos2

(137b)

Z' ;x [sina cosý] + 41 - sin2a cos 2 O + R (137c)

The equations for vortex strengths and positions derived in Sub-
section 5. 1 are based upon the (R, 7, i) coordinate system. For pur-
poses of computing fin interference forces and mormients, it is desired
to know the location and strengths of the jet vortices at the body sta-tion located at distance I downstream of the nozzle station, and in a

plane perpendicular to the body axis. The coordinates of the fin
station in rhe body-fixed system are:

xt*

XI :

Z' 0
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Letting the subscript f denote the coordinates of this same point in
the jet-oricuted system, Equations (137) may be inverted to obtain the

* result:

xf Pcosc-R sina coso (I138a)

-f P sifla singo (I 38b)

si am Cos "d)

f : : k c : ~ R (I~~o s ( 38c)

The equation for a plane normal to the missile centerline at f has the
followin~g vector form

(r -r - t 0(139)

Equation (135)rniav be inverted to obtain in terms of the base vectors

. , k"), which aeietclt h e-retdbs etr
S,:I7ith~the result:

06coa + sina sino sina coso coso
-'a J . 2

1 - sina Cos * 1-sin a cos

When this is substituted into Equation (1319), the expression obtained for
the plane in terms of jet-oriented coordinates is

- ~~[Cosac] f~ -X) + La sin' j
1 -sin2 a cos 2 j

siamoco sc coso) 1z (140)

I_ _ _ _ _ -sin 0 tCo
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The intersection of this plant. with 'he jet trajeictory must now be found, I
in order to determine the piint at which jet properties should be calcu- ,

lated. This is done by noting that the jOt trajectory may be defined by
the relations:A

x = x. (141a)
"*I

=0 (141b)

S= ;j (i) (141c)

Substitution of these and the relations of Equztlons (1 38) into Equation
(140) yields

sina cosa cosob

i. Cosa - ; i .- C (142) 4

Equation(142)may be written in terms of the similarity variables
defined in Equations (106)by simply multiplying by (lye/de) to yield

sinct Cosa coso 13
X Cosa - z. (X.) S~*4C5 O~=L (143)

V-sin a coo 0

where

aeCTL d
e

Finally, using the empirical Equation(120), Equation (143) may bewritten as

0(1. 76) .(0 .28) sin& cos 0 L (144)J .--ain 2 cIos 2 0Cs

Solution of this equation for X,, ',ields the location along the jet tra-
jectory at which vortex strengths and spacing should be calculated.
It should be noted that Equations (141) refer to the centerline of the jet
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Figure 60. Actual Jet Plume and Theoretical Model for Calculating Induced Velocitim at the Fin Location
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trajectory, so that the distance at which the jet vortices intersect the
plane will be somewhat different from that givcn by Equation(144..
This effect, however, is neglected. 7
The formulas obtained in Sutsection 5. 2 may be used to calculate the M
location and strength of the jet vortices. The transformation Equa-
tions (137) will then give their location in the body-oriented coordinate
system, at a station located a distance I downstream of the nozzle,
and in a plane normal to the body axis

5. 3. 2 Jet Fin Interference Forces and Moments

As previously mentioned, it is assumed that crossflow velocities are
much smaller than the free-stream velocity. Further, it is assumed
"that the body cross-section does not change at the fin location, I , and
that the vortex strength does not change very much over the space of
a body radius. Consequently, the flow induced by the jet vortices
about the missile -body is equivalent to the incompressible flow induced
"about an infinite circular cylinder by two infinitn countorrotating

-vortices, as illustrated in Figure 60. The strength and location of
the vortices are taken to be those at a distance I downstream of the
nozzle. They are calculated by methods described in Subsections 5. 2
and 5. 3. 1. The angles of attack and side slip induced by the vortices
at the fin locations are calculated. It is assumed that the fins are flat
plates of high. aspect ratio, sO that simple strip theory may be used to
calculate the induced forces and moments, as described in Reference
50. Figure 61 shows schematically the upwash and sidewash induced

zA

Figure 61. Uph and Sidwmh Produced by a Singl Vortex
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by a positive vortex of strength r, at the plan, s z' : 0 and y' 0,

respectively. The complete vortex system co itributing to interference
effects consists of the two jet vortices, rl, a; d rL, as well as their
images inside the cylinder. Since all vortices ha%. the same strength,
a pcsitive strength Jr is introduced such that

F zr

fil

"-rH rI =-r

L where the subscript (i) denotes the image vortcx inside the cylinder.
The vortex system is deplcted in Figure 62.
.ollowir.g Appendix B of Reference 50, the upwash produced by these
vortices at the y' axis is:

W r ( Y' -Y'I + i 2(4a

I _ _ _ _ _ _ _ _ _ ( I 4 5 a )iI 
1

w-" ( 2 , 2 (145b)
yI - I' + zZ'

""y y 2 ) (15c

rl =Y - Y",
W, r.(4121"T ' Y'l 2 +Z '1
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2 2

1 +i2 

-
(4

R' z. R (147)

R 2  R2
=Z + '7 Y Z.L yt + 1 (4b

Y'2 y, 2+Z2i Y'22 + Z'Z' (47

Also. the sidewash induced on the z' axis is given by
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Sr = (148a)

1 + (z' 1 ) 21
y + -1 2 (Z1 4d

Th fngemtr i ep )'di iur 63 .Th vait, of. .'.:. .. ,'

c r [,it (y' ..-R) (149)"

Cl = Cr z ....... )]. (150c):-. ... i "] ~rr

ZyI +(z ' - Z ' i ).. . . .• .. "'

te r (Ct o)

The fin geometry is depicted in Figure 63. The variation of chord c
with distance from the axis may be written in the, general form

o = c r -[, lw I,. -R (1,49)

or, normalized by the cylinder radius R, in the equivalent from

where:

Cr = normalized root chord (cr/R)

S= taper ratio {Ct /cr)/

S = normalized semi-span (s/R)
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Figure 63. Fin Geometr

Y' normalized coordinate (y'/R)

To compute the induced angles of attack and sideslip, the induced

velocities given by Equations (145)and (149) are to be divided by the com-

ponent of free-stream velocity along the xI axis. For smaillangles of

attack, o0, this component is approximately equal to U,,. The total

induced angle of attack along the y' axis is therefore

•i =• Wl+ w2 + wl' + wi

~~1W

and the sideslip angle along the z' axis is

V1 1i+,v +v,+vl+
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Using strip theory, then, the normal force on the horizontal fine is

-R

FZ =q C{R .c(T)c(l)dq + C.(?)c(VI)dt? (153)
R -s 1 f

the side force on the vertical fins is

-Rrt/ C, MCW, + f }.0CIRy --. ® - )c({,) (154)

and the rolling rmoment on the fine is

R -R

ML= Ii J Cc()Idf, + f );d; ,

R -" "

-I c1'•c•)d ( • i•• )d 155)

Pitching and yawing moments are obtained by multiplying Fz and
Fy respectively, by R. In the above equations, Cli represents the
two-dimensional lift coefficient for a flat plate at an angle of inci-
dence. It should be noted that the above equations assume that the
fins are independent of each other (i. e. , fin-fin interference effects
are neglected). Also, any forces induced by the vortices on the
cylindrical portion of the body are not included.
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The relation betwt -i Cli and the induced angles of attack or sideslipdepends on whether the free stream is subsonic or supersonic. Inthe subsonic case, Reference 51 gives the following relation:

C M) < (156)

and for supersonic free streams

-i4 jai (157)

where

The derivation of final results for the induced normal force in the
subsonic case will now be carried out in detail. With

CG 1 + W + W' 1 +W24

"ii
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andi F.quation(!45), and Equation(153)niay be writLen in the form:

r s (11 - y, I) c(rl) d•j

-Z lZ 21
CZM VR<1 R.6U ( - y'd + Z'

Is

f ('9 y'z) c(q) dr- t- y' ct'1) dl

1+ 2 R +

(11~~i c (71) &1)d' u .

R (q Y1) + z' + 11 y

R 2

- R f) \- f -R "' 1 l c(VI) dl
fn 2

,,-R (n - Y') •(idn R(n-Y'

(TII y,+ z

S-! Z, 1(158

1

where CZ is the normal force coefficient defined by

cz Z (159)
Z M < 1 wR2q

If all lengths in Equation (158) are normalized by the cylinder radius, R,
and the symmetry of the fins is utilized, so that:U|

C('1) W
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I
Then it is possible to write Equation(158)in the following form: I

F

1 (T . __y,_ ___

¢zM <1 *"R 1 )j Y , + Z'2

+ Y I Y• " 'I+

V + +y, 1)+l dz- CO 0 , y 2 + Z'2

(,i +y 2 ) 1 Sd ( 1 Y 1 0)

(vI + 2 i d) + CI [ 1 ( + 2)

where C(vi) is given by Equation (150•

The integrals in Eqatmtion(160)are evaluated by standard techniques,
and the final result is:

MC < = [WRI'• ] {I(YliZ' 1 ;S',)'. I(Y'2'Z' 2;S,>.)

2)< z 11

I(Y'l, Z'I;SX) + I(YYZ, z;S )Y1 (161)
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where:

I(Y'I, Z ;S,X) Cr [ log [S(Yt.) + I

I+Z
(s + Y , l + ,

,i ' '--'x + '-k• y,' log (+') 2
".1 l I.SoI! S-l z + Z-1" _

+ j1' ("1+Y +.Z,1 /

(1"Y'1.• IY-f I IQ7- -1)" Z 1-7-+,- tan-,

tan' / y) \ + [ tan( 'h ta& 16'()

and

y1
y1 2 .-.' etc.

1, + Z'I

The side force and rolling moment coefficients are defined:

FY
yC (162a)

wR q,

ML
CL 3T 3q62b)
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Integrations similar to those carried out for the normal force lead to
the following results for the subsonic side force coefficient

C= [rU VG(Y' 1 Z ;S X) + G(Y' 2PZtz;S' X)

+G(Y'li, Z'1 i;SX) - G(Y' 2 i, Z'z2;S.X) (163)

where, for example,

SG(Y'IZ;S, X) -I(Z' IY' 1 ;So,.) (164)

(i.e., G is obtained by interchanging Y'I and Z' 1 in Equation(162),
as might have been e:xpected from the symmetry of the situation).

Finally, carrying out the integrations indicated in Equation (155),
leads to the following results for the subsonic rolling moment
coefficient.

C- H(YH , ZI;S , - +Z';, +H(Z; 1 y);S.)

-H(Y'I Z' ;SIX) - H(Z' ,Y1 ;SI)

1(Y 1 (1 5

+H(Y' 2 ,2Z' 2 ;S,'X) + H(Z 'i Y'2 ;S,)I) (165)
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where:

H [cs-•) 11 1 9 - 1) Y,-1

2 2l2H) (S-Y I 1)-+ Z ,I +'AI y 1

+ 1) log [(:Y:) 2 ZhI

I-•, 1.k•Z,12 {÷Y )2 +: Z I2]

+ (I-1) YI \ (I'/.--"- log Ls+Y'l)+ z1

[ +Y1-z + 1, 2Y

- tanl (i-'1)j - z(. '~ tan --(I~ )

"j. tan Y'l \-' ] " -1I \S/1+'S' 1 \ I -k>

jtan -I (S÷YtI - tan- (1166)•

\Z'I IS \ Z~ i 11-M66)a- Y

Comparison of Equations (156) and (157) indicates that the interference
coefficients for supersonic free streams may be obtained from subsonicresults by simply multiplying by (2/1).
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5.4 RESULTS OF JET-FIN INTERFERENCE CALCULATIONS

The formulas derived in Subsection 5. 3, in -onjunction with the

methods for predicting vortex strengths and positions described in
Subsection 5.2, have been used in two computer programs for calcu-
lating jet-fin interference forces and moments on a cruciform
missile. One of these programs is valid for subsonic free-stream Mach
numbers, and the other for supersonic free-stream Mach numbers. As
previously mentioned, the interference effects calculated are the
incremental force and moment coefficients which are induced on the
fins alone by the presence of the jet vortices.

A brief description of the programs is now given, with reference to
the flow chart and tables of Figure 64.

Given the geometric and aerodynamic input parameters listed in
Figure 64, the prograri first calcultes the appropriate equivalent
subsonic jet. scale, using Equation(1lb)in the subsonic case, anL
Equation(119) in the supersoniccase. For specific angles of attaci,
a and 'bank #, the program then calculates the value of X at which
vortex properties are to be computed by solving Equation(144)
numerically.

At this point, a check is made to ensure that the resulting X corresponds
to a value of X which is greater than 5. This is done to ensure that the
fins lie within the "vortex region" of the jet as defined in Reference 22.
The restriction is necessary because the model for the jet vortices
is only valid in this region. The program is terminated if the condition
X > 5 is not met.

If the above test is passed, the formulas derived in Subsection 5. 2
are used for computing the strength of the vortices and their position
relative to the jet-oriented (7, I', T) coordinate system. Using the
transformation Equation (1372 the vortex positions relative to the body
fixed (x', y', z') coordinate system are finally calculated. After
suitable normalization of the vortex coordinates, the formulas derived
in Subsection 5.3.2 are used for calculating interference forces
and moments. At this stage, it is again necessary to discriminate
between sonic and supersonic free-stream Mach numbers, as
described in Subsection 5. 3. 2. For each value of the free stream
Mach number, MOO, and pressure ratio, P, the program prints all
the interference coefficients listed in Figure 64 as functions of the
bank angle *, for each value of the angle of incidence o. The results
of some sample computations are shown in Figures 65 through 67. As
indicated in the figures, the free-stream Mach number is 0. 8 and the
angle of incidence is 20.
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Figure 66. Fin Interference Side Force Coefficient (M. - 0.8, a - 20)
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The maissile ar.d fin geometries correspond roughly to the configuration
tested in Reference 27. and depicted in Figure 4. The specific values
used for the geometric parametetrs are:

57. 405 in.

Ss~ :6. 855 in.

R 2.75 in.

Cr = t= 5.5 in.

The nozzle is assumed to be sonic, as the program requires. and i,
have a diameter

d. = 0.22in.I J

Pitching and yawing moment coefficients about the nozzle station
may be obtained from Figures 65 and 66 by simply multiplying
C and C by the normalized moment arm (I/R).

The behavior of the curves in Figures 65 through 67 may be explained
as ',allows. The equations of Subsection 5. 2 as well as the data of
Reference 46 indicate that the vortex spacing Y_, vortex height
above the exit planeZo, and vortex strength r increase with
increasing pressurt; ratio P, for a fixed M, and a fixed station
downstream of the nozzle. Generally, r grows with P at a faster
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rate than either V. or To In a sense', then, an increase in P will

produce two counteracting effects on the fin interference forces and
moments. As the vortices move farther away with increasing P,
interference effects should decrease; on the other hand, an increase
in P also tends to increase interference effects by increasing r.
Unless the vortices are quite close to the fin, the latter effect
predominates, since "r increases at a faster rate with P than either

Y. or 70 . However, forces induced on fins located near the vortices
are more sensitive to vortex position, and an increase in P may well

decrease interference, effects. These trends are reflected In Figures.
65 through 67. Figure 65 indicates an increase in C with pressure
ratio. (It in recalled that the nozzle centerline in aligned with the
Z-axis'. ) On thc -her: hand, side firce and rolling moment
coefficients, whic.ii are primarily governed by the upwash induced by..
the vortices on fins that lie near the vortices, may either decrease or
increase ,with, P, depending on the ban1k angle #'.. The trends obtained
when * is varied may be explained with the aid of Figdure 68. Because
of. symmetry, side force and rolling moment coefficients, must be
zero at 4 i 0° and at i * 180'. The normal forcecoefficient must
be greater at. 4 = 180" than at* 0", since for a positive a the
vortices lie closer to the fina'at the former roll angle. From
Figure 68b it is evident that the side force should be negative at

- 90*, and the side force. may Alurther be expected to peak near
- 90°. Figure 68 also indicates that at * - 90* the contribution of the

horizontal fins to the rolling momenktis positive (couuterclockwise),
while that of the vertical fins is negative. Consequently, it is not
surprising that under certainconditions the interference rolling
"moment coefficient changes sign as 0 is varied. This effect is
evident in Figure 67, for the case P = 40. As previously mentioned, fin
interference forces for subsonic M, have been measured during the
AMICOM -CAL tests described in Reference 28. -A sample case for
the configuration tested yielded large errors in the magnitude of the
theoretical interference forces, although the measured trends were
predicted correctly. The configuration tested in Reference 28,
however, had a very low fin panel aspect ratio--one half of that shown
in Figure 4. Consequently the simple strip theory used in calculating
interference forces would not be expected to apply to this configuration.

Experimental data are available for supersonic free stream Mach
numbers, and a comparison has been made using the supersonic fin
interference program. The geometry chosen corresponds to the
configuration tested in Reference 31 for the center nozzle location.
The geometric parameters have the following values

d. .0.11 in.

I 5.688 in.

s = 1.375in.
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R n=0.687 in.

Cr a 1.375in.

¢t = 1. 375 in.

The relevant experimental interference normal force coefficient has
been obtained from data by the operation.

Cz = (CZ) - (Cz)fins on fins off

Theoretical and experimental results, are compared in Figure. ' 69 and
70, for pressure ratios of 60 and 100, respectively. The agreement
appears to be satisfactory.
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Section 6

CONCLUSIONS

After extensive study of the problem of J1 with a subsonic mainsiream,
it appears evident that adequate analytical models can be formulated
from potential flow theory; however, more accurate models will hays
to be based on viscous flow analysis. In general, the adequacy of any
analytical methods developed will remain unknown until more detailed
ex'perimental data are available.

Very few measurements of the behavior of an underexpanded jet
plume exhausting into a subsonic cross flow'have been conducted.
Measurements of the jet vortex strengths have so far been limited
to the results described in References 45 and 46, and these were
only obtained at one .station downstream of the nozzle. Measurk-
ments of the flowfield in the viscous wake-like region on the lee-
ward side of an underexpanded jet have not been.made, although it
appears that this region influences the interference pressure distri•.'
bution very strongly. Tests of an underexpanded jet exhausting from
a flat plate have been conducted by AMICOM concurrently with this
study. Data resulting from these experiments will provide a basis for
evaluating the analytical models developed in this study and others
reported in the VTOL- related literature.

Based upon data concerning subsonic jets in subsonic mainstreams
and the limited underexpanded jet data available, the behavior of the
J1 interference pressure distribution appears amenable to empirical
description. The Fourier series empirical fit method developed in
this study is expected to provide a relatively convenient and accurate
empirical description of the interference pressure distribution. It
has been shown in this study that a characteristic dimension of the
underexpanded jet plume will scale the interference pressure distri-
bution as the jet exit dimension does for subsonic jets. Consequently,
it is expected that data from tests involving an underexpanded jet will
be easily fit by the Fourier series method, with jet exit Mach number
replacing the velocity ratio (Uo./Uj) as a parameter.

Several semi-empirical models of the interference pressure distri-
bution due to a jet in a subsonic mainstream have been developed in
this study. Generally, the approach taken has been to postulate
equivalent flowfields which appear plausible either on physical grounds,
or from a qualttative knowledge of the behavior of the induced pressure
on a flat plate. These flow models contain empirical constants which
are determined by matching to experimental pressure distributions in
some region. The validity of a particular model is then judged by how
well the pressure distribution is represented in other regions. The
m.-del flows postulated have been assumed to be inviscid. Reason-
ably good representation of the pressure coefficient distribution
has been achieved with some of these models. Close agreement
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with data is usually restricted to a particular range in the azimuthal
angle. Unfortunately, the models which give best overall agreement
with data are those which seem most unrealistic on physical grounds.
This difficulty is tied to the assumption of a model flow which is
inviscid. On the lee side of the jet, a realistic model must include
viscous effects.

The equivalent solid obstacle analogy provides a basis for calculating
approximate Jl control effectiveness in supersonic flight. In general,
the behavior of amplification factor with angle of attack and flight
Mach number, as well as with jet thrust, can be predicted. Account-
ing for the effects of boundary layer separation by redistributing the
pressures due to the inviscid flow about the equivalent obstacle does
not appear to increase the accuracy of the prediction method. The
effects of equivalent obstacle shock reflection from the vehicle surface
should be accounted for to improve the accuracy and general validity
of the prediction method. Equivalent obstacle flowfield analyses which
admit nonaxisymmetric shocks are required in order to acc'.,nt for
this shock interaction.

Methods for calculating jet-fin interference effects for subsonic
and supersonic mainstreams have been developed. They are based
upon a simple, semi-empirical model of the jet-induced vortices
which is valid at large distances from the nozzle. An equivalence
between sonic, highly underexpanded jets and subsonic jets has been

postulated, and data fur both situations are used in evaluating univer-
sal empirical constants. The resultant -vortex strength variation has
been shown to agree quite well with the limited data available. For
given vortex strengths and locations, simple schemes for computing
the induced load on control fins placed well aft of the jet nozzle have
been developed. One of these is valid for subsonic free stream Mach
numbers, and the other for supersonic freestream. Results of sample
calculations show that for a fixed Mach number, increasing the jet
chamber pressure may increase or decrease fin interference eifr:.;ts,
depending upon the relative location of the jet-induced vortices and
the fins which contribute to the interference force or moment. Limited
data comparisons for supersonic mainstreams have been made, and
the agreement between calculations and experiment has been found to
be satisfactory.
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Appendix A

TERMINAL SHOCK LOCATION
FOR SUPERSONIC NOZZLES

In this appendix, a formula is derived for calculating the.location of the
terminal shock or Mach disk in a highly under expanded rockel plume
exhausting into still air. The approach is the analytical 'equivalent of a
graphical method developed by Adamson and Nicholls in Reference A- 1.
The expression for the terminal shock location for a nczzle with exit
Mach number, Mj, greater than unity, is based up-n a simple,: semi-
empirical representation of the Mach number distribution along the
centerline of the plume of a sonic nozzle.

A. 1 SONIC NOZZLE

For a sonic nozzle exhausting into still air, it has been shown in
Reference A-2 that the Mach number distribution along the centerline
of the plume nmay be represented by the flow from a compressible source
whose sonic sphere radius is given by

* d*
r = (0.61)d* (A-l)

(Starred quantities will refer to conditions for the sonic nozzle.)

Flow continuity for a compressible source requires that

* * *2 ***
Pl u r = puz

where ( )l denotes conditions at the sonic radius M* = I

z* is a coordinate with origin at the nozzle exit plane (Sca
Figure A- Ib)

The above relation can be written in terms of stagnation conditions as

Using isentropic flow relations and Equation (A-I), Equation (A-2) can
be written in the form

(0.61) m*2]4( - A-3)
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Figure A-2 compares Equation2(A-3) for y 1.4 with the results of a

method of characteristics snlution reported in Reference A-3. Evidcntly
the agreement is excellent, except in the immediate neighborhood of the
orifice.

With the subscript f denoting flow conditions Just upstream of the terminal
shock, Equation (A-i) and Equation (A-2) can be combined to yield

Y+I 112 1/2
d* = (0.61) -. ,.--

d

The final pressure and temperature, p and Tf, are determined by the
condition that the pressure across the MAach disk rise to the external
pressure, p.0. Using normal shock relations, then, the above equation
may be written asf

Y+l /*1/2 .N/4 212
__ (0.61) ~ '-)- (o. ) (-C)Mf +2 (A-4)( -; 1)M*

The final Mach number, MI, may also be determined by the condition that';,:
the pressure immediately downstream of the terminal shock be equal to pm
and normal shock relations then yield the equation

cc 2vM* . (Y- 1  [z-
""+l J (A-5)
poj ('-+

It is not possible to invert Equation (A-5) to obtain MM for a given
pressure ratio, but it is possible to obtain this quanti y from Figure A-3,
which is a plot of Equation (A-5) for Y = 1.4. Figure A-3 indicates
that for moderately high pressure ratios M* is large, and it is therefore
possible to write Equation (A-4) in the approximate form

4 %I+ 1/4 T \2(
h (0.61) 4(V-1) I (A-6)

d° \T

If it is further assumed that Tr - To, and that y 1.4, Equation (A-6)
becomes

h PO.

--r- = (0.755) (A-7)
d.
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This may be compared with the exrnpirical formula derived by Grist,
Sherman, and Glass in Reference A-4

h*;

S:(0. 645) j A-8id.

Equation (A-4) predicts that the effects of varying y and the temper-
ature ratio (T,/To.) will bo small. This general trend has been
observed experimehntally in Reference A-4.

A. 2 SUPERSONIC NOZZLE

Following the method of Adamson and Nicholls in Reference A- 1, the
terminal shock location for a supersonic nozzle will now be derived
based on the sonic nozzle results of the previous section. Referring
to Figure A-la, it is evident that the flow along the centerline of the
supersonic nozzle plume will remain undisturbed until the first expan-
sion fan from the nozzle lip strikes the axis. Let the distance from
the exit to the point at which this happens be denoted by z. In
4Figure A-Ib, the dictance zt- denotes the point at which the expanding
flow in the subsonic nozzle plume reaches a Mach number equal !:
the exit Mach number of the supersonic nozzle. Adamson and Nicholls
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have assumed that the Mach number distribution between h and z1 is
the same as the Mach number distribution between h* and z4j_.
Ascumning once again that the flow then crosses the Mach disk to
achieve a. pressure equal to p,,, it follows that

h = z +h* - ZM,

J

Normalizing by the exit diameter of the supersonic nozzle yields

..h -- h . Z Jz.•
(A y ( ZM~

d. (A -9)
dj --.

Equation (A-4) may be used-for h/ d.;, and Equation (A-3) will give,
for zM /d7

ZM. _ 4

d_ (0.61) izZ Jl)
(0 6 (A-I 10)

dS

It will now be required that the sonic and supersonic nozzles have
the same stagnation conditions

P*= p
0.3 .3

T*= T
0. 0.3 3

and then isentropic streamtube ; ... . yield

+~

- Mk- (A-Ill1

Furthermore, it is evident fromt Figure A-la that if the initial charac-
teristic is assumed to be straight, the ratio (zl/d. d is just equal to one
half the cotangent of the Mach angle.

Thus,

1_ 1 ý 2 (A-l12)
d. 24
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*2 4
I'5

(A-. 13)

Again, M 'f may be obtained from Figure A-3 for a given presmi t. ra~i
(and for V=1 .4) or if M'f is assumed to be large an approxipiakion i

d (0.61)(L 'j 5 T ' +,

(A- 14)

(where it has again been assumed that To mo o)

It is evident that Equation (A-13) does not reduce to the sonicý nozzle
result when M. =1 (due to the second term in the braces). This
discrepancy isl caused by the fact that the compressible source model

* ~does not represent the Mach number disitribution near the exit correctly
(see Figure A-2).

4
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LI A. 3 COMPARISON WITH- DATA

Figures A-4, A-5, and A-6 compare the above formulae to the experi-
mental results of Love, et al. (Reference A-5). For M. 1,some
discrepancy is evident in Figure A-4. Figure A-4 also Alustrates the
difference between taking the limit of Equation (A- 13) as M, -I1 and
using the sonic nozzle results of Equation (A-4). In both instances,
the approximate formulas obtained by assuming Mf >> I give results

whic ar *nclo'se agreement with those obtained by using the actual
vhchalue' ofM ive byFgrV-.Tediceace o
due to, the'lfact that supersonic source flow does not accurately repre-
sent the Mach number distribution in the imdaeneighborhc,-d of
the no:zzle plane, as' shown in Figure A-2. Since this region o~f dia-
crepancy, if . retfioved by the -method of calculating h for supe r ionic
.. n o the.Jkjreem~ent with data imp-roves at higher nozzle Mach

num~tr..F kggre 1k- compares theory and experiment for M- 2,
a iemnit is Very good. The more complicated Equat Iton ~A.13)

g~ives slightly b'etter..agreement with data but the difference with the
rii ostbtained4 by, *iumn M > I does not appear to be significant.

FiueA-6 comi~paresl 'hecr n experiment for M' 3.. It should be
"%oted 'that for this Mach number, the terminal shocý does not exist for
prqssix.;re ratios .of less than 90. The points shown in the figure below

thsvalue 6o re'rspond to the distance from the exit to the first inter-
scinof,.a diamond shock pattern. The unshaded data points on the

Y. figure aro~truae Mach disk locations, and the theory again predicts them
4uite 'accurately.
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K Appendix B
SINGULARITY STRENGTHS FOR VORTEX MODEL

:B. I DERIVATION OF FOURIER COEFFICIENTS

As discu~sei in Section 3. 2. 2, the vortex model ,leads. toý.he followirij
expression for the pressure coefficienits

~A 2  + [A(li[+j[iiil¶I'.
M T

(BAi

Th bcive i+t bantefrttue ersi h uIrsrQ
reprsenttio fo Eqton (Bi yreawo.h ritqi:

*110

+~r A--fC(O)d 33

3 t

05

'i .
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c (r) C. fC(r, 0) cosnG do (B-3)

(n =1, 2)

(The symmetry of the model about the plane 0 C insures that all sine
terms in the series will be-identically zero.) Since pressure cooffi.-
cients predicted by the.mo'del and -determined f romn experiment ar.n to
be rnatchod at r 1. it is simpler to start out with Equation (B-1)
written for..r = 1. ~Written in real variables, Equation (B-1) takes the

A2 21

C (1,6) { A -' +A2  F -{2A 1 (.1-A 2)J c.O

:.12A} cos 26 + 34'0 Arcoo 20 +

-. ~~~ 0 A Ie

+ A .+ r ) + (; o (A2 -1)]coue +

+ [To -A(;o+ to A 2]1 (B-4)

where

F(e) =a + a cosO +a2 coo 20 (B-5)

and:

a +( -jo 2 +;2 +T2 (B-6)

a1  -2z (+4 0 j0 )( "0+ O (B-6b)
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a= 2 o(B-

Then the integral in Equation (B-Z) yields

-C (1) (A + Az A~ 2 Zt) 2 -~

+1 .10 (B-7)

"wihere l,", .•i ..

fo 0.

fn d
bo +" I cose + z CosZ(

Ol +&I 2ome+a1co61 dO (B-9)

and

b0 -•o o " A1 (; + o) - AZ (B- 9a)

bI = Al (1 +4o 0o) + q 0 + Zo) (A2 -1) (B-9b)

b 1I A2 (00) (B-90



F

I'

I
Evaluating I first, it is advantageous to make the substituation: *

0"

So that the integral becomes, with some rearranging

+1

2 2a2 2 ( a, a
S2a2a 2

or, factoring the quadratic in the denominator

+1 "dx
102 A~f(B- 1)

- 1 - (x-c)(x'- •)

where it may be shown (using Equation B-6), that

•- 2 
i

0 +10 (B- I la)

2 +
C 0 - - (B - Ilb )

20

The integral in Equation (B-10) may ve evaluated as follows: Consider
a complex z plane, slit along the real axis from .I to +1. In this
plane, con3ider the contour integral

-1_ (z - (B - 12)

zC c (z -Z)

where C is the contour shown in Figure B- I
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Figuem 0-1. Intnlnion Contour for Fqwon (5.12)

It is assumed that the poles c and € do not lie on the contour, and that
Frthe ci-c!m of radius R is large enough to enclose both singularities.

cIn that cse, the use of the Residue Theorem a3 discussed in Ref-
erence B-I ýielji6

Tc-- -)

Writing the different parts of the integral along C, and then allowing

qR

and
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~Jj it is possible to show that

2 +1 dx (B -14)I-- 1 J?(xC) (x C-)

Then Equations (B -13) and (B -14) lead to the final result

WI
02 2a, (c-Z) (-5

4C

The integral

101

in Equation (B-9) m'ay be evaluated in an analogous fashion, as may the
other integrals which arise from the application of Equation (B-3). The
final equations obtained for the three Fourier coefficients at r 1 are:

2 2 2A 1 + A2 - a, 3A 3 - a 2 3 A 2A 3 + C a(1) = 0 (B -16)

b3 3 A3b 2 3A 2A 3 + 12A 1A 2  1 i~, 1 3 - PIA c1 ()=0 B-)

2
c3 3A3 + 2 3A2A3 - 13A1A3 +A 2  3 c2 l)=0 (-

where:

a33 0 0 ~ - (B- 19a)

. . .........
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"0 0

b12  o2 
(B-"0 c

b 3 a23 21 -; '0 (B.20d)

3 b23  -- 2 -
( 2)

o o(B-20b)
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B. 2 SOLUTION OF THE EQUATIONS

Substituting numerical values for co(l), ci(l), and c2(l) evaluated
using Vogler's data from Reference (B-2) will yield the five simul-
taneous equations for the five unknowns A 1 , A2 , A3, ro% and 00. These
are Equations (31) and (32), in Section 3.2.2, (B-16), (B-17), and
(B- 18), with the supplemental Equations (B]- I 9a) through (B-2 1s), in.
which it is recalled that

Sie e'ieo0

40 r 00 0,i r 0e

It is possible to combine the above set of equations into another set
".which is more suitable for numerical calculation. After a consider-
able account of algebra, the results are,

;4 ... 2=•.. .+ A + +Q = 0 (B-22)

where

b33 23 + [4 (xj;- 1) sin 28 [2:~ ~ (B-23a)
4 33P 0 ] [ oP + 0 ]3

= 8(r 2 1) sin ] [€o sineo +
cons

+ 4c 3 3 3 (-- ) + 16c 3 3 sin 280 (B-23b)
0
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4b 3 - [4 (rI 2 _) sin2Ao [Pja'(1) 8r sineo] +Q2 =433 0 01 (0o-

[r 0  ] c 3 3 + 2A3 (rosin6o) "Cl(l) -c "

r° ]c33€21 3 (8ro

cosseo
r C3 3 c2.(l) -r 0 sin 0(B-23c)

-[8 (r 2 +)sie0 c2 (l) r ['.o] [8r 0pin%]

-4p 3 c 1 1) (B-23d)

11( 4cosO0  1 (B-20e
oc c 2 (l) - 4c1(l) - c 2%1) (B-J3e)-ro = •or

an expression for b3 3 is given by Equation (B-20a). Written in real
variables this has the form

l6to3 sin2eo cos

b 3 3  0 sin ) O 0os8 , (B-24)
(r2- [r4 _2Zcov2O

The variahle P3 ia given by

p=(4r sine 0  (Cr 2 1l)+12Zcos 2 0  1- i](B-25)
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The variable C33 has been defined in Equation (B-12a), and in terms
of real variables it has the form

C3 3 = -4sln8 p+oi1[ro - ro(r + 1) 1+2co2 j + I

S (r -1) rCos 20 + 1

(B-26)

Note that if values of r and 8o are assumed, Equation (B-22) becomes
a fourth order polynomal for A3 . The other equations in the set are:

c,(I) - 4A (rosin~o) - 2

AJ 3 33 (B-27)2 3 A3 + 2 
o

Aos 2A2  0 (B- 28)1 2o

r 10A

tan 9o- -0- tan2 e+ [ -2 +I tanO. -(L3 0 (B-29)

and
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f 4A,2A sinfle17 + JA7 + A' + co(l)jý r6
3 0 0

14A A sin [I + A 2A3 sin 2os° r+ 2

2~ 2

1 A~ + A~ + C ()) (1+ 2cos20O) +

4!

"+4A2sin20o r2 4 4A2A 3 sineo$ r 2 -
4A2sn o Ir2 4A iG0 o

- A +A2+ co(l) =0 (B-30)

Equations (B-22) through (B-30) have been used in a numerical schemeto obtain solutions. Starting with assumed values for r and 00, thecoefficients of the fourth-order polynomial in Equation NB-22) arecalculated using Equations (B-23a) through (B-26). All roots of thispolynomial are then obtained numerically, and any complex roots dis-carded. The remaining values of A3 are used to calculate correspond-ing values A 2 and A1 by means of Equations (B-27) and (B-28). Thecubic in Equation (B-29) is then solved numerically to obtain new valuesfor 0 ; and, finally, the seventh-order polymonial in Equation (B-30)is sofved for ro. Any complex roots are again discarded.
Note that if all roots in the above scheme are real, for each initialvalue of ro and 00 there exist the following possibilities:

4 possible A1 , A2 , A3 's

12 possible Go's

84 possible ro's
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In practice, however, very few roots turn out to be real. In addition
to requiring that all variables be real, two more constraints are
imposed on the results. It is known physically that the vortices must
lie in the leeward quadrants, and consequently the requirement

0" -5 0 S. 900 (B- 31)

is imposed. Since it is also known that the vortices lie near the jet,
it is also required that

0 < r < I (B-32)

B. 3 NUMERICAL RESULTS

The validity of the vortex model as tested by carrying through a
complete case for U, /Uj = 0. 4, based upon the data of Vogler in
Reference B-2. A direct Iterative scheme as suggested by the discus-
sion above was unsuccessful because in many cases an input (ro, 00 )
pair which satisfied the constraints of Equations (B-31) and (B-32), did
not lead to any calculated (r.., 0.) values which satisfied this constraint.
Therefore, it was decided to search the matrix to acceptable ro and 0 0
inputs for those values which led to new values which also satisfied
constraints of Equations (B-31) and (B-32). A flow chart for this
scheme is shown in Figure B- 1. Briefly, the program takes input
initial values for the components of the vortex position vector (ro, 00)
which satisfy the constraints of Equationo (B-31) and (B-32), and
searches for solutions to the set of five nonlinear equations which also
satisfy the above constraints. The mosi relevant input-output diagram
is depicted in Figure B-2. The diagram indicates how the acceptable
output varies as the input e0 is varied for a fixed value of the input ro.
The input values vary over the entire acceptable range (solid lines),
but only those input values which lie within the regions shown by dotted
boundaries lead to output r and 0o which satisfy the constraints of
Equations (B-31) and (B-320. For the cases shown in Figure B-3, the
first input values (solid points)

ro :0.65

0
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I"

d t.put 21point o

As the input 0_ is increased, the output points approach the input"
points, until a•I input point ro 0. 65, e 35"; the corresponding

output point is ro = 0.64, 00 = 36. 5o. Since the system of equations
is nonlinear, more than one output may correspond to a single input
point. This fact is illustrated in Figure B-2 by the points labeled
"second branch". As the input 69 is increased beyond 35, the output
values no longer satisfy the constraints (B-31) and (B-32), 1,n d are
therefore ignored. At r = 0.65, 60 = 75'. satisfactory c .put values
are again obtained, and fhey are shown in the lower right-hand corner
of Figure B- 1. Exact equality of input and output would signify that a
solution to the set of equations has been found. This has obviously not
yet been achieved by the above results, and iterations in the neighborhood
of the points labeled "approximate covergence" would be necessary to
obtain a more accurate auswer. However, it was felt that the above
results were accurate enough to allow an overall evaluation of the
model. Examination of diagrams analogous to Figure B-Z has shown
that convergence is not approached at any other point. The final
results for this case are taken as:

A1  -0. 1207

A 2 = -0. 0478

A3 = 0. 668

00 36.310

ro = 0. 64

Substitution of these values into the set of Equations (B-22) through
(B-30) verifies that they are approximately satisfied. These are the
values which have bean used for plotting the model three term Fourier
series representation shown in Figures 20 to 26.
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I.
Appendix C

EQUIVALENT SOLID OBSTACLE ANALOGY COMPUTER PROGRAM

C. 1 MAIN PROGRAM

C. 1. 1 Input Tape

The first task performed by the main program is that of reading the
input tape. The input tape is an even-parity BCD tape, density 800
bits per inch, which contains the images of punched output from a
method of characteristics anadysis of the flow fields around a unit
hemisphere-cylinder at various Mach numbers (Mi}. The input tape
contains the images of the following cards:

1. The first card contains JMACFI, the number of Mach numbers
in the sequence (Mi). (For operation on the IBM 7094,
JMACH-6.)

2. The next JIUACH cards contain

j. nj, Mi, Xjmin, Ximax

r where j 1,2,.... JMACH; n- is the number of net points in

the jth flow field; Mj is the I;ach number,
JXmin and XJmax

denote the limits of the stored flow field data.

(Mi- Xjmin' Xjax

are stored in the arrays AMLOC(6), XMINC(6), and
XMAXC(6) respectively.

3. The next cards contain the actual net point data

j, i, Xji, Rji, Pji ,2,....JMACI
i = 1,2. nj

where (XJ1, RJ1" PJie are the logitudinal and radial
4 coordinates, and the associated pressure ratio, P/PI"
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4. The next 9 x (JMACH) cards contain the coeffiAdeLs Cjm of
the set of equations

9

X = .Cjm nl j 1, 2.... JMACH
m=l

describing the shock shape associated with the Mach number
Mj. These coefficients are stored in the array COEF(6, 9).

All data read from the input tape is stored in COMMON/BLK2/
so it is available to the integration subroutine (INTEG). The
input tape is read first, and none of the information in BLK2
is altered during the execution of the program. Thus it is
necessary to read this tape only once, regardless of the
number of cases to be run. COMMON/BLK2/ accounts for
11, 773 storage locations in the program when JMACH = 6.

C. 1. 2 Input Cards

After the input tape has been read and COMMON/BLK2/ filled, the
input cards for the first case are read. The data on the cards fill the
input array RR (100). which contains jet and free-stream data
described in Table C-1 in locations 1-19 and vehicle geometry
specifications in locations 20-99. Each (K = 1-100) input card
contains five combinations (K, RR (K)) in a format specification
(OX, 5 (13, E9.4)) where only nonzero values RR (K) need be input.
The input cards for each case must be preceded by a card containing
the number of cards, NCARD, to be read for that particular case
punched in an (I10) fozrmat.

C. 1. 3 Program Logic

The logic involved in the main program is summarized by listing
the four main subroutines in the following manner:

1. SUBROUTINE KWKBOD(NC, RR)

Inputs via calling arguments: Component type flags,
Component end points

Inputs via COMMON: None

Outputs via calling arguments: Nune

Outputs via COMMON: All integration mesh data trans-
ferred to integration subroutine through COMMON/MAIN/.
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Table C- I

INPUT LOCATIONS FOR VEHICLE GEOMETRY SPECIFICATIONS

Location Quantity Item

1 Mo Free stream Mach number

2 LBL$EP Flag e0 No
I I Yes

3 NCOMP Number of vehicle components

4 DB Vehicle diameter

5 LB 'vehicle length

6 6 Nose half angle (degrees)

7 Xcg Vehicle c, g. location

8 Y cg Vehicle c. g. location

9 zcg Vehicle c.g. location

10 Xj Jet location

11 zj Jet location

12 CDIS Nozzle discharge coefficient

13 NPJ Jet patch number

14 dt Jet diameter

15 Nozzle cant angle

16 Me Jet exit Mach number

17 vi Jet specific heat ratio

18 poi/pD Jet pressure ratio

19 NEWTPM Flag 1(0 Newtonian theory on lee side11( Prandtl-Meyer theory on lee side

(Locations 20 .- 100 conLain the body section inputs as described in
Section C. 2.)
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External references: Several other subroutines are called
by KWKBOD during vehicle geometry calculations. Since
these require no special inputs or handling by the user, a I
detailed description of them is omitted here.

2. SUBROUTINE LOCFLO (AMLOC, JMACH, ALPHA, NPJ,
GAMINF, AMINF, CONANG)

Inputs via calling arguments: Number of local Mach numbers,
JMACH. Sequence of local Mach numbers (Mi] . Jet patch
number, NPJ. Nose half angle, 6 .

Inputs via COMMON: None

Outputs via call,.ng arguments: Sequence of angles of attack

Outputs via COMMON: Pressure ratios

[(±z)] at jet location.

Local flow direction vectors Euxi) [uyiJ, [iUzi]

Angle of attack flags 'Y(3FLAG)i]

Unit outer normal at jet A

3. SUBROUTINE JETHIT (AMLOC, GAMINF, GAMJET,
POJPIN, D1T, JMACH, THRUST, PHI, AME)

Inputs via calling arguments: Jet data

Yj, Poj dt, , Me, CDIS

Sequence of Mach numbers [Mi)

Inputs via COMMON: Pressure ratios [Pi]
Angle of attack flags [(JFLAG)i]
Outputs via calling arguments: Jet thrusts [Ti]
and normal, sonic, vacuum thrust [Ts] .

Outputs via COMMON: Sequence of equivalent body
radii [Si]

4, SUBROUTINE INTEG (JMACH, CGX, NPJ, AMINF,
GAMINF, ALPHA, AREF, DREF, TC)

Inputs via calling arguments: Number of local Mach
Numburs, JMACH.
Free streani M.,
Vehicle c. g. location Xc , Ycg, Zcg
Reference area and leng Aref, dref
Vehicle angles of attack [aij
Jet patch number, NPJ
Jet thrust ['ri
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S~Inputs via COMMON: Angle of attack flagb, [(JFLAG)i]

Outputs via COMMON: Vehicle force and moment coefficients

External references: Another subroutine, PRESS, is calledby INTEG during the integration procedure.

5. SUBROUTINE WRITR (ALPHA, DREF, AREF, AMINF, N)

Inputs via calling arguments: Vehicle angles of attack [(a]
Reference length and area, DREF, AREF
Free stream Moo
Number of local Mach numbers (N)

Inputs via COMMON: Jet-off and jet-on aerodynamic
coefficients
Jet thrusts [Ti)
Jet pressure ratio (poj/p.,)

Unit outer normal at jet (Aj)

Outputs: All aerodynamic coefficient and JI amplification
factor outputs are printed by this subroutine.

C. 2 VEIHICLE GEOMETRY

The vehicle is assumed to be fixed in the coordinate system xyz with
its nose at the origin and with the positive x-axis as the axis of
symmetry. The cross section of the vehicle can be made up of
N components, where N lies in the range I S N S 8. Thus, the input
scheme requires that each component be described by a separate
curve in the x-z plane. The curves may be one of three types:
straight line, circular arc, or arbitrary curve. The input data
for the first curve is entered in locations 20-29 of the input array,
RR, the second curve in locations 30-39, etc. A summary of the
inputs required for each type of curve is shown in Figure C-i.

It should be noted that the flag denoting the type of curve (1, 2, or 3)
must be entered in locations 20, 30, 40, etc., and the coordinates
entered in the following four to eight locations.

After the vehicle shape is read in, the integration mesh is set up.
Each ccmponent is divided into four patches, each subtending a 45*
angle on the surface. As is also indicated in Figure 4. 1, the free
stream velocity vector is assumed to lie in the x-z plane, so
consideration of the half-space y s 0 is sufficient for vehicle geometry
considerations. A 16 rectangle per patch mesh is constructed on
all the patches upstream of the jet. Aft of and including the patch
NPJ on which the jet is located, the mesh fineness is chosen
to be 64 rectangles per patch. The patch number of the jet is an
input quantity and can be determined readily from the numbering
system indicated in Figure 4. 1. If an even finer mesh is desired
in the vicinity of the jet, the rej.on may be constructed of several
short components.
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INPUT LCCATION#

FLAG I ......... 10 + ION
z2 xI . N11 + IN

z1 . . . . . . . . . . . . 12 + ION

Z1 x2  . . . . . . . . . . . . 13 + 1i N

I . . .2 . ?....... . 14 + ION

xI x2

. STRAIGHT.LINE SEGMENT

FLAG -2 ............... 10 + tON

x1 . . . . . . . . . . . . 11 + ION

X2  . .. .. . . . . . . . 13 + 10N

,2 Z2 . .. .. .. . .. .. 14 + ION

02 (DEGREES) ... 15 + ION

x 1  X2

b. CIRCULAR ARC

FLAG- 3 ......... . .... 10+ ION

KI . . . . . . . . . . . . 11 + ION

. ................ ... 12 + ION

X2 . . . . . . . . . . . . 13 + ION

Z2..3 .2 .... ............ 14 + ION
S IX3 . . . . . . . . . . . . 15 + ION

i l3 .. .......... . le + IONX i4 ............17 O
I 4 .. . . . . .184*10N

'4 4 . ...... ..... 18 + ION

x X2 x3 X4

c. ARBITRARY CURVE

Fiours C.1. Vuhiclo Proile Description Options
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The coordinate system described above is a standard aercdynamic
coordinate system for the user's benefit. Inside the program,
however, a transformation is made to another coordinate system
in which:

X (INPUT/OUTPUT) = X(3) or operating z axis
Y (INPUT/OUTPUT) = -X(2) or operating negative y axis
Z (INPUT/OUTPUT) = X(l) or operating xaxis

for the purpose of internal program operation. The user should
bear this in mind wheni consulting the flow charts.

C. 3 LOCAL FLOW SUBROUTINE (LOCFLO)

In this subroutine, where the angles of attack {u•) corresponding to
local Mach numbers {MJ} at the jet location are .alculated, several
algebraic equations are solved numerically. The schemes used
(binary chop and regula falsi) are straightforward and should present
no problem to the user. The convergence criteria and basic logic are
readily apparent from the flow charts, so no further discussion is
necessary here.

Although the program has the capability of using either Newtonian or
Prandtl-Meyer lee side aerodynamic theories, the Prandtl-Meyer
theory is used for determining the angles of attack {fa}.

For every angle of attack, a t, corresponding to a local Mach number,
Mk- at the jet location, the fr'g (JFLAG)k is set equal to zero. If noGk is found corresponding to a particular Mach number, (JFLAG)k
is set equal to I indicating to the integration subroutine that no
pressure integration is to be carriedi out at this angle of attack.

If the input nose half-angle is less than 85°, the attached shock version
of LOCFLO is executed. If the angle of attack corr3sponding to a
particular local Mach number is greater than 0. 3 radian, an appropri-ate message is printed. If data is desired for larger angles of attack

for a vehicle with a sharp nose, it is recommended that the program
be rerun for a slightly blunted vehicle of the same overall dimensions.
In this case the input nose half-angle will be 900 and the detached
shock option will be executed.

C. 4 PRESSURE INTEGRATION SUBROUTINE

The pressure integ: ation over the vehicle surface is carried out by
subroutine INTEG. This subroutine uses the integration me'.h
constructed by subroutine KWKBOD. The integration is performed for
the vehicle at those angles of attack, ak' of the sequence. [( a] , for
which the flag, (JFLAG)k, of the sequence, [ (JFLAG)iI , was set
equal to zero in subroutine LOCFLO.

At each mesh element, before calculating the surface pressure,
another subroutine, PRESS, is called. This subroutine tests to see if
the mesh element lies within the region of influence of the jet. If it
does, the pressure used in the integration scheme is calculated by the
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method described in section C. 4. 1. If the mesh element lies outside
the region of influence of the jet, control is returned to subroutine
INTEG where the pressure is computed without regard for the jet.

In subroutine INTEG, the pressure on each mesh element outside the
region of influence of the Jet is determined by a local inclination
pressure law. On the wincward side, tangent-cone theory is used. On
the lee side, depending on the value of the input flag NEWTPM, either
Newtonian or Prandtl-Meyer hypersonic small disturbance theory is
used.

SUBROUTINE PRESS (X, Y, Z, J. KFLAG, PEPI, KPRESS) is given
below.

Inputs and Outputs

Inputs through calling arguments:

X, Y, Z are the coordinates of the mesh element in question.
J is the index denoting an angle of attack of the sequence
jai}.
KPRESS(6) is an array zeroed in INTEG and used tn count
the times PRESS is called.

Outputs through calling arguments:

KFLAG is set equal to one if the point (X, Y, Z) is inside
the region of influence of the jet, and set equal to zero
otherwise.

Inputs through COMMON/BLKI/:

PIPINF (6) contains the pressure [ Pi I at the jet location.

XYZJ(3) contains the coordinates (Xi, Y Z ) of tho jet
location.

UNJ(3) contains the components (nx, n y, n ) of the unit outer
normal A, at the jet location.

UX(6), UY(6), UZ(6) contain the components of the series
of unit vectors [Ji I aligned with the local flow at the jet
location.

SCALE(6) contains the scale factors ISi I which are '
calculated as described in Section 4.

NEWTPM is the input lee Lide aerodynamic theory flag.
(0 - Newtonian, I - Prandtl-Meyer).

IBLSEP is the input boundary layer separation flag.
(0 - Inviscid pressure profile. 1 - Modified pressure profile).
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Inputs through GOMMON/BLK2/:

NCHAR(6) contains the numbers [Nc of characteristic net
points in the equivalent body flow field at local Mach
numbers [Mil

XCHAR(6, 650), RCHAR(6, 650), PCHAR(6, 650) contain the
coordinates f Xcji, I[ R cji] , of the net points and their

associated pressure ratios [P ii.

XMINC(10) contains the abscissas (XCmin ] of the most

forward net point.

XMAXC(10) cnntains the abscissas [Xcmax ] of the farthest

aft net point.

Beyond this point the pressure perturbation due to the
hemisphere-cylinder is negligible. The pressure perturbation
is ignored at radial angles in body cross-section larger than
*150 degrees from the jet centerline.

COEF(10, 9) contains the coefficients Cjk in the equations

9

X' = C Rk j = 1, 2.... JMACHshock k 1I jk shock ''

for the shock shapes in, the equivalent body coordinate system.

In this subroutine, the coordinates of a point (x, y, a) are transformed
into the equivalent body coordinate system (X' , R' ) and examined
to determine whether they lie within the region of influence of the jet.
The limits of the interaction region depend on whether the boundary
layer separation simulation opilon is being exercised. In the inviscid
case, the upstream limit Is the equivalent body shock wave. In the
case of the modified pressure profile, the problem is reduced to
determining whether a hypothetical point (X,-1, R' ) has an Inviscid
pressure ratio associated with it greater than the experimentally
observed plateau pressure.

The logic involved in this subroutine may be considered as consisting
of three main parts. First, the limits of the interaction region are
calculated; second, it is determined whether the point in question lies
within the interaction region; and finally, the appropriate pressure
ratio is assigned to the point (X', R').

An array of counters KPRESS(6) zeroed in subroutine INTEG
indicates when PRESS is being called for the first time. the first
time it is called for a given angle of attack (i. e., a particular local
Mach number and equivalent body flow field) the limits R'nin and
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R'max corresponding to the shock end points X'min and X'max read j
in on the input tapc must bc determined. The numerical methods
used to solve the equation

9

S= (n-i)2' C R.

are unique. Because of the unknowi nature of the above curve fit
outside the interval (X' min, X' max), the iteration schemes were
designed to conve-ge 4o the end points of the inteýrval (R'rnin., R'rnax),
from the interior. To find R'rmax, an initial R' = 15 is guessed, and
the iteration proceeds outward in steps of size

X1m - X ' (R')
DR max

The resulting sequence (R' + n D R). ayproachef R'max monotonically
because the Mach angle Ip a tal-1 (?L - 1),12 is always smaller
than the shock angle at any point X's (R'). To find R'min , an initial
value of R' = 10 is gvessed and the iteration proceeds toward the
X' axis in steps of size

X' Rm') -X
DR " sM ITL

dX'

d R'

The resulting sequence { R' - n DR I approaches R'min monotonically

because the shock angle 1 = tan- dX is a nonotonic increasing

function of R' and always greater than zero. The pattern of kteration
in both the above cases should be clear from Figure C-I. An examina-
tion of the flow charts for subroutine PRESS will show that the .ýe are
safeguards in the event of a numerical overshoot of an end point.

The second task of the subroutine is to determine whether a point lies
inside the interaction region. Clearly, if X' " X' max or if
R' -, R'rnax, the point in question is outside the region and control
it returned to INTEG with KFLAG set equal to zero, indicating that
the surface pressure at the point (x, y, z) is unaffected by the presence
of the jet. Next, the shock abscissas are found for the particular
value of R' in question. If R' > Rrmin, it is clear that the 3hock
station Is given by

9

X n C R' (n-i)
s n l' n
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if R' < Rmm, a normal shock is assumed (since the point (X' R')
is near the sonic line on the equivalent body) and X's is set equal to
X1 rain .The inviscid pressure ratio Piny across the shock iq then
calculated for the appropriate shock angle .

R' < R'min

9 ( n
ta R n Ramin <5 R-<s max

If the boundary layer separation simulation is being exercised
('BLSEP =1), a new abscissa

, (X ( 5 " x .) +X t computed for every)"D -- 9 ( ' -xj .(X8-X) ,8

point upstream of X' . The original value XI in stored in XTEMP
u

and the flag LFLAG In set equal to one to indicate to later sections of
the subroutine that the point (X', R' ) is an ý.nage of an upstream
point. In the inviscid cawe, KFLAG is antoed and cQntrol returned to
INTEG if X'< X'.

The pressure perturbation ratio 1- associated with a point (X'. R' )
is found by locating the nearest characteristics net point
(XCHAR (J. Ic), RCHAR (3, I•)in the stored equivalent body flowfield and using its associated pressure ratio PCHAR (3, Lc). The

index J indicates the local Mach number, and Ic the I th net point,
when arranged in order of ascending Xe coordinates. Instead of
searching all NCHAR(J) points for the nearest one, searching is
confined to a circle of radius

R' R Min

around the point (X' , R'). This Is accomplished by determining the
index Is corresponding to the net point with the largest XCHAR(J, 1)
< X' - d and the index I corresponding to the point with the smallest
XCHAR (J, I) >X' + d. Then, the search for the nearest point need take place

lei
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TL 1no points i tL interval

[XCHAR(J, Is), XCHAR(J, 4 9 J
Li

1;,P within the circle of radius d, the procedure is repeated in a circlc
of x adius

d = XCI-IAR(J, 1 L + 1)- X-HA(, )I
I

until tht nearest point is found.

4
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